Transport at Nanoscale Interfaces Laboratory

March 29, 2019 Seminar at 10h30, VE102

Charge Transport through Magnetic and Electro-Active Layers of Polyoxometalates - Dr. Dominique Vuillaume, Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS,Lille
Abstract

Polyoxometalates (POMs) are nano-scaled molecular oxides endowed with a remarkable structural diversity and outstanding magnetic and/or redox properties. This makes them fascinating magnetic and/or electro-active molecules to be integrated in functional materials such as multi-level non-volatile memories or other nano-electronic and spintronics devices.[1,2] Yet the shaping of POMs layers onto electrodes is still a sticking point, albeit essential to improve the control on the POMs/electrode interface and hence the ultimate electrical properties. We have developed several routes to the deposition of POMs: by electrostatic deposition of POMs ([H7P8W48O184]33- ) onto a preformed SAM on Au or by direct covalent grafting of POM ([PM11O39{Sn(C6H4)C≡C(C6H4)N2}]3- (M=Mo,W)) hybrids onto n-Si(100)[3], which gives compact monolayers. We will present them together with the transport properties of the resulting molecular junctions,[4,5] assessed at several scale‐lengths by Hg drop contact and conducting-AFM on monolayers and nanodot‐molecule-junctions.[6,7] Similarly, we probed the energies of {Co9(P2W15)3} frontitier molecular orbitals (a magnetically functionalized POM) in the surface-bound state, which was found to directly correlate with cyclic voltammetry data in aqueous solution, indicating a weak molecule-electrode electronic coupling, prone for further exploitation of its magnetic properties in spintronics devices.[8]


[1] Chen, X. L.; Zhou, Y.; Roy, V. A. L.; Han, S. T. Adv. Mater. 2018, 30 (3), 1703950.
[2] Tanaka, H.; Akai-‐Kasaya, M.; TermehYousefi, A.; Hong, L.; Fu, L. X.; Tamukoh, H.; Tanaka, D.; Asai, T.; Ogawa, T., Nature Communica%ons 2018, 9, 2693.
[3] Volatron, F.; Noel, J. M.; Rinfray, C.; Decorse, P.; Combellas, C.; Kanoufi, F.; Proust, A. J. Mater. Chem. C 2015, 3 (24), 6266-‐6275.
[4] Laurans, M.; Francesca, K. D.; Volatron, F.; Izzet, G.; Guerin, D.; Vuillaume, D.; Lenfant, S.; Proust, A., Nanoscale 2018, 10, 17156-‐17165.
[5] Dalla Francesca, K. ; Lenfant, S. ; Laurans, M. ; Volatron, F. ; Izzet, G., Humblot, V., Methivier, C., Guerin, D., Proust, A., Vuillaume, D. Nanoscale 2019, 11, 1863-‐1878.
[6] Smaali, K.; Clément, N.; Patriarche, G.; Vuillaume, D. ACS Nano 2012, 6, 4639–4647.
[7] Clément, N.; Patriarche, G.; Smaali, K.; Vaureoe, F.; Nishiguchi, K.; Troadec, D.; Fujiwara, A.; Vuillaume, D. Small 2011, 7, 2607–2613.
[8]. Yi, X.; Izarova, N. V.; Stuckart, M.; Guerin, D.; Thomas, L.; Lenfant, S.; Vuillaume, D.; van Leusen, J.; Duchoň, T.; Nemšák, S.; Bourone, S.D.M.,Schmitz, S.; Kögerler, P. J. Am. Chem. Soc. 2017, 139, 14501–14510.


This work has been partly supported by EU COST actions POCHEMON and MOLSPIN.


Further information: www.nanomol.wordpress.com