Transport at Nanoscale Interfaces Laboratory


Graphene - Quantum Dot Photodetectors

Combining high mobility graphene transistors with efficient light absorbing colloidal quantum dots may pave a way for cheap, high resolving infrared photodetectors. Light is absorbed in the Quantum Dot layer, creating excitons. One charge carrier type is transferred faster to the biased graphene transistor, leading to an additional electric field. This is measured by a current change in the graphene transistor. We are investigating the detailed mechanism of these graphene-QDs photodetectors, expanding the range of spectral photoresponse, increasing the detectivity, and scalling down to the device size below the light wavelength.

 

Further sources:

 


Authors list in the link "Guidelines for accurate evaluation of photodetectors based on emerging semiconductor technologies", Nature Photonics, 2025

L. J. A. Ferraresi, G. Kara, N. A. Burnham, R. Furrer, D. N. Dirin, F. La Mattina, M. V. Kovalenko, M. Calame, I. Shorubalko "AFM-IR of Electrohydrodynamically Printed PbS Quantum Dots: Quantifying Ligand Exchange at the Nanoscale", Nano Letters, 2024, 24, 35, 10908-10914

G. Kara, P.Rohner, E. Wu, D. N. Dirin, R. Furrer, D. Poulikakos, M. V. Kovalenko, M. Calame, I. Shorubalko "Scaling of Hybrid QDs-Graphene Photodetectors to Subwavelength Dimensions", ACS Photonics, 2024, 11, 2194-2205

G. Kara, S. Bolat, K. Sharma, M. J. Grotevent, D. N. Dirin, D. Bachmann, R. Furrer, L. F. Boesel, Y. E. Romanyuk, R. M. Rossi, M. V. Kovalenko, M. Calame, I. Shorubalko "Conformal Integration of an Inkjet-Printed PbS QDs-Graphene IR Photodetector on a Polymer Optical Fiber", Advanced Materials Technologies, 2023, 2201922

M. J. Grotevent, S. Yakunin, D. Bachmann, C. Romero, J. R. Vázquez de Aldana, M. Madi, M. Calame, M. V. Kovalenko, I. Shorubalko "Integrated photodetectors for compact Fourier-transform waveguide spectrometers", Nature Photonics, 17, 59-64 (2023)
  M. J. Grotevent "Nanoprinted Quantum DOT/Graphene Infrared Photodetectors, and their Temperature-Dependent Mechanism of Charge Carrier Transfer", PhD Thesis, ETH Zurich, 2020

M. J. Grotevent, C. U. Hail, S. Yakunin, D. N. Dirin, K. Thodkar, G. B. Barin, P. Guyot-Sionnest, M. Calame, D. Poulikakos, M. V. Kovalenko, I. Shorubalko "Nanoprinted Quantum Dot–Graphene Photodetectors", Adv. Optical Mater. 2019, 1900019

M. J. Grotevent, C. U. Hail, S. Yakunin, D. Bachmann, G. Kara, D. N. Dirin, M. Calame, D. Poulikakos, M. V. Kovalenko, and I. Shorubalko "Temperature-Dependent Charge Carrier Transfer in Colloidal Quantum Dot/Graphene Infrared Photodetectors", ACS Appl. Mater. Interfaces 2021, 13, 1, 848–856

M. J. Grotevent, C. U. Hail, S. Yakunin, D. Bachmann, M. Calame, D. Poulikakos, M. V. Kovalenko, I. Shorubalko "Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 µm", Adv. Sci. 2021, 202003360

 


Master projects

Our lab offers a variety of Master projects for students.


THz Broadband Metalenses

The goal of this Master project is the simulation and fabrication of Terahertz (THz) broadband metalenses>

Metalenses offer significant advantages over classical lenses by allowing compactness and enhancing functionality of optical systems. In this project, the student will design, numerically simulate, and fabricate metalenses operating in the 0.1–1 THz frequency range. Simulations will be performed using Comsol Multiphysics, while fabrication methods will include 3D printing and molding. The work will be conducted at Lepto GmbH, a spin-off company of Empa in Dübendorf.

THz radiationlies between the microwave and infrared regions of the electromagnetic spectrum. THz radiation has unique properties such as non-ionizing interaction with matter, penetration of many non-conductive materials, and sensitivity to molecular vibrations. This makes it ideal for imaging, spectroscopy, and sensing. Importantly, THz frequencies are emerging as a key enabler for next-generation high-speed telecommunications (6G), offering ultra-broadband data transfer and novel satellite communication possibilities.

Type of work: 50% theory, 50% laboratory

Position: 1 Master student

Contact: Interested candidates should contact Dr. Elena Mavrona at eleni.mavrona@empa.ch or elena@lepto.ch.