Transport at Nanoscale Interfaces Laboratory

Colloidal HgTe quantum dot/graphene phototransistor with a spectral sensitivity beyond 3 µm

Grotevent MJ, Hail CU, Yakunin S, Bachmann D, Calame M, Poulikakos D, Kovalenko MV & Shorubalko I

Advanced Science, 202003360 (2021)

Infrared light detection enables diverse technologies ranging from night vision to gas analysis. Emerging technologies such as low-cost cameras for self-driving cars require highly sensitive, low-cost photodetector cameras with spectral sensitivities up to wavelengths of 10 µm. For this purpose, colloidal quantum dot (QD) graphene phototransistors offer a viable alternative to traditional technologies owing to inexpensive synthesis and processing of QDs. However, the spectral range of QD/graphene phototransistors is thus far limited to 1.6 µm. Here, HgTe QD/graphene phototransistors with spectral sensitivity up to 3 µm are presented, with specific detectivities of 6 × 108 Jones at a wavelength of 2.5 µm and a temperature of 80 K. Even at kHz light modulation frequencies, specific detectivities exceed 108 Jones making them suitable for fast video imaging. The simple device architecture and QD film patterning in combination with a broad spectral sensitivity manifest an important step toward low-cost, multi-color infrared cameras.