Alkali-silica reaction in concrete

/documents/55996/14345363/New+2020+Alcali+Silica+Ale/0e688184-b3af-42b7-bdee-0da88ab9190a?t=1600247989377
Fig. 1: Typical crack pattern caused by ASR (retaining wall, A), horizontal crack in the gallery of a 200 m high arch dam spanning its entire width (B), severely cracked deck of 142 m long bridge (C) and slot cutting in a dam to decrease stress caused by ASR (D).

Alkali-silica reaction (ASR) causes cracking and with it substantial damages in concrete structures worldwide. In Switzerland, several hundreds of structures, including bridges and dams, are affected (Fig. 1), causing substantial costs due to repair or replacement. Although ASR is one of the major focal points of concrete research since the first cases were reported in the 1940's, our knowledge is still not sufficient to understand various aspects of the reaction. Due to a lack of in-depth knowledge about the mechanisms of the reaction and about how damage develops, ASR mitigation and management of affected structures is still based on a purely empirical approach. In order to improve this situation, a breakthrough in the understanding of ASR is needed. Such an ambitious goal can only be reached by using a multidisciplinary and multiscale approach that will be able to link chemical and mechanical aspects of ASR. This requires a broad range of expertise that is covered by the participating institutes. They bring together the fields of chemistry and thermodynamic modelling, structural analysis of reaction products, 2-D materials characterization, 3D X-ray tomography and mechanical modelling. In order to benefit optimally from this broad range of expertise, the proposed six subprojects are closely linked.

Project period

2017 - 2021

/documents/55996/14345363/New+2020+Alcali+Silica+Graph/a6b2ec54-24ca-443a-85ba-87353e7d5de2?t=1600247785267
Team

Project Leader

Team

Barbara Lothenbach
Emil Gallyamov
Emmanuelle Boehm
Erich Wieland
Francesco Marafatto
Guoqing Geng
Jean-François Molinari
Karen Scrivener
Mahdieh Shakoori Oskooie
Masha Bagheri
Michele Griffa
Pietro Lura
Rainer Dähn
Solene Barbotin
Zheunguo Shi
 

 



Publication

Boehm-Courjault, E., Barbotin, S., Leemann, A., & Scrivener, K. (2020). Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cement and Concrete Research, 130, 105988 (8 pp.)

Geng, G., Shi, Z., Leemann, A., Borca, C., Huthwelker, T., Glazyrin, K., Pekov, I. V., Churakov, S., Lothenbach, B., Dähn, R., & Wieland, E. (2020). Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data. Cement and Concrete Research, 129, 105958 (11 pp.)

Geng, G., Shi, Z., Leemann, A., Glazyrin, K., Kleppe, A., Daisenberger, D., Churakov, S., Lothenbach, B., Wieland, E., & Dähn, R. (2020). Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 76(4), 674-682

Leemann, A., Shi, Z., & Lindgård, J. (2020). Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cement and Concrete Research, 137, 106190 (10 pp.)

Leemann, A., Shi, Z., Wyrzykowski, M., & Winnefeld, F. (2020). Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Materials & Design, 109066

Shi, Z., Park, S., Lothenbach, B., & Leemann, A. (2020). Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C. Cement and Concrete Research, 137, 106213 (10 pp.)

Shi, Z., Leemann, A., Rentsch, D., & Lothenbach, B. (2020). Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Materials and Design, 190, 108562 (9 pp.)