GoNanoBioMat
The aging population represents an enormous financial burden for society, unless ways can be found to maintain independence and quality-of-life (QoL) as long as possible for each individual. To achieve this, novel concepts and technologies for new solutions and products are needed. For example, the use of polymeric nanobiomaterials in medicine might be a solution for answering to this need.
Currently, the number of health applications on the market remains small due to the unclear situation of the future regulatory assessment of efficacy and safety. In this context, the GoBioNanoMat project aims to enable SMEs (small and medium size enterprises) and their suppliers, and Research Institutes to work on the development and production of polymeric nanobiomaterials for drug delivery implementing Safer-by-Design (SbD) approach. The major expected outcomes of this project are:
- A verified knowledge base (built on peer-reviewed scientific publications on polymeric nanobiomaterials, their environmental and human health risks and the regulatory aspects.),
- and guidelines to implement SbD approach for polymeric nanobiomaterial drug delivery systems
- as well as in depth investigation of three selected materials like Chitosan, Polylactic (PLA) acid and Polyhydroxyalkanoates (PHA) regarding drug delivery applications.
The GoNanoBioMat consortium combines expertise in the area of nanobiomaterial science and technology, life science, pharmaceutical science, as well as nanosafety and life cycle thinking. A strong regulatory background and knowledge base building, dissemination and training belong as well to the core competences of this consortium.
Guidelines:
“Guidelines for implementing a Safe-by-Design approach for medicinal polymeric nanocarriers”
Publications
Hauser, M.; Li, G. Y.; Nowack, B. (2019) Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J. Nanobiotechnol. 17: 56.
Special issue in Frontiers Bioengineering and Biotechnology: Polymeric Nano-Biomaterials for Medical Applications: Advancements in Developing and Implementation Considering Safety-By-Design Concepts.
Gerrit Borchard, Claudia Som, Manfred Zinn, Vasile Ostafe, Olga Borges, Giuseppe Perale, Peter Wick: Editorial: Polymeric Nano-Biomaterials for Medical Applications: Advancements in Developing and Implementation Considering Safety-by-Design Concepts, Front. Bioeng. Biotechnol. pdf
Schmutz M., Borges O., Jesus S. , Borchard G. , Perale G. , Zinn M. , Sips Ä. , Soeteman-Hernandez L. , Wick P. and Som C. (2020). A Methodological Safe-by-Design Approach for the Development of Nanomedicines, Front. Bioeng. Biotechnol. pdf
Hauser, M.; Nowack, B. (2019) Meta-analysis of pharmacokinetic studies of nanobiomaterials for the prediction of excretion depending on particle characteristics. Frontiers in Bioengineering and Biotechnology 7: 405. pdf
Jesus, S., Marques, A. P., Duarte, A., Soares, E., Costa, J. P., Colaço, M., Schmutz, M., Som, C., Borchard, G., Wick, P., & Borges, O. (2020). Chitosan nanoparticles: shedding light on immunotoxicity and hemocompatibility. Front. Bioeng. Biotechnol. pdf
Roman D. , Roman M. , Som C. , Schmutz M. , Hernandez E., Wick P. , Casalini T., Perale G., Ostafe V. and Isvoran A. (2020). Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan, Front. Bioeng. Biotechnol. pdf
Casalini T. , Limongelli V., Schmutz M. , Som C. , Jordan O., Wick P. , Borchard G. and Perale G. (2020). Molecular Modeling for Nanomaterial–Biology Interactions: Opportunities, Challenges, and Perspectives, Front. Bioeng. Biotechnol. pdf
Jesus S. , Schmutz M. , Som C. , Borchard G. , Wick P. and Borges O. (2020). Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far, Front. Bioeng. Biotechnol. pdf
Marques C. , Som C. , Schmutz M. , Borges O. and Borchard G. (2020). How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept, Front. Bioeng. Biotechnol. pdf
-
Share