/documents/55905/73818/Overview+grey/ba021353-1e22-4725-b80d-bded929a8d95?t=1534840304657

Welcome to the nanotech@surfaces Laboratory, a research section of the Swiss Federal Laboratories for Materials Science and Technology (Empa). We are a highly motivated team of physicists and chemists dedicated to develop and characterize novel functional materials and devices based on nanoscale surface effects. Using a close combination of experimental and computational approaches, we aim at a fundamental understanding of the structural and electronic properties of low-dimensional nanostructured materials and systems, and at establishing a rational basis for their application in next generation technologies.

Our main competences – surface physics and chemistry – are located within the realm of fundamental research, but we have a long tradition of developing basic research results into real-world technological applications. It is part of our mission to assist internal and external partners in technology development with our know-how and experience. To this end, we collaborate with academic and governmental research labs and industrial companies worldwide.

We are organised in three groups that cover research topics such as carbon nanomaterials and functional surfaces, both from an experimental point of view and via atomistic simulations. Our research interests cover a wide range of topics at the interface of materials science, surface physics and chemistry, with a particular focus on low-dimensional organic & carbon-based materials. We follow different experimental approaches, but with a core activity on surface physical and chemical investigations, in particular by means of scanning probe techniques (STM/STS/nc-AFM) and photoelectron-based methods such as XPS, ARPES and XPD, complemented by theory and atomistic simulations.

NEWS
Latest Publications

Controllable p-Type Doping of 2D WSe2 via Vanadium Substitution
A. Kozhakhmetov et. al., Adv. Funct. Mater. 2105252 (2021). DOI: 10.1002/adfm.202105252

On-surface synthesis of π-conjugated ladder-type polymers comprising nonbenzenoid moieties
J.I. Urgel et.al., RSC Adv. 11, 23437 (2021). DOI: 10.1039/D1RA03253D

On-surface activation of benzylic C–H bonds for the synthesis of pentagon-fused graphene nanoribbons
X. Xu et.al., Nano Res. (2021). DOI: 10.1007/s12274-021-3419-2

The role of chalcogen vacancies for atomic defect emission in MoS2
E. Mitterreiter et.al., Nat. Commun. 12, 3822 (2021). DOI: 10.1038/s41467-021-24102-y

 

Upcoming events

EWEG2D'21 webinar series
31.08.2021, 11.00CET
Prof. Andrew T. S. Wee
Department of Physics, National University of Singapore
"Is 2D Vanadium Diselenide Ferromagnetic?"

 

European Workshop on Epitaxial Graphene and 2D Materials (EWEG2D'22)
May 24 - 28, 2022
St. Moritz, Switzerland