Welcome to the nanotech@surfaces Laboratory, a research section of the Swiss Federal Laboratories for Materials Science and Technology (Empa). We are a highly motivated team of physicists and chemists dedicated to develop and characterize novel functional materials and devices based on nanoscale surface effects. Using a close combination of experimental and computational approaches, we aim at a fundamental understanding of the structural and electronic properties of low-dimensional nanostructured materials and systems, and at establishing a rational basis for their application in next generation technologies.

Our main competences – surface physics and chemistry – are located within the realm of fundamental research, but we have a long tradition of developing basic research results into real-world technological applications. It is part of our mission to assist internal and external partners in technology development with our know-how and experience. To this end, we collaborate with academic and governmental research labs and industrial companies worldwide.

We are organised in three groups that cover research topics such as carbon nanomaterials and functional surfaces, both from an experimental point of view and via atomistic simulations. Our research interests cover a wide range of topics at the interface of materials science, surface physics and chemistry, with a particular focus on low-dimensional organic & carbon-based materials. We follow different experimental approaches, but with a core activity on surface physical and chemical investigations, in particular by means of scanning probe techniques (STM/STS/nc-AFM) and photoelectron-based methods such as XPS, ARPES and XPD, complemented by theory and atomistic simulations.

Latest publications

Surface-synthesized graphene nanoribbons for room-temperature switching devices: substrate transfer and ex-situ characterization
G. Borin Barin, et. al., ACS Appl. Nano Mater., Just Accepted Manuscript (2019), DOI: 10.1021/acsanm.9b00151

On-surface light-induced generation of higher acenes and elucidation of their open-shell character
J.I. Urgel, et. al., Nature Communications 10, 861 (2019). DOI: 10.1038/s41467-019-08650-y

Graphene Nanoribbons Derived From Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains
D. Beyer, et. al., J. Am. Chem. Soc., 141 (7), 2843–2846 (2019). DOI: 10.1021/jacs.8b10407

Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals
M.I. Bodnarchuk, et. al., ACS Energy Lett4 (1), 63−74 (2019), DOI: 10.1021/acsenergylett.8b01669