/documents/55905/73818/Overview+grey/ba021353-1e22-4725-b80d-bded929a8d95?t=1534840304657

Welcome to the nanotech@surfaces Laboratory, a research section of the Swiss Federal Laboratories for Materials Science and Technology (Empa). We are a highly motivated team of physicists and chemists dedicated to develop and characterize novel functional materials and devices based on nanoscale surface effects. Using a close combination of experimental and computational approaches, we aim at a fundamental understanding of the structural and electronic properties of low-dimensional nanostructured materials and systems, and at establishing a rational basis for their application in next generation technologies.

Our main competences – surface physics and chemistry – are located within the realm of fundamental research, but we have a long tradition of developing basic research results into real-world technological applications. It is part of our mission to assist internal and external partners in technology development with our know-how and experience. To this end, we collaborate with academic and governmental research labs and industrial companies worldwide.

We are organised in three groups that cover research topics such as carbon nanomaterials and functional surfaces, both from an experimental point of view and via atomistic simulations. Our research interests cover a wide range of topics at the interface of materials science, surface physics and chemistry, with a particular focus on low-dimensional organic & carbon-based materials. We follow different experimental approaches, but with a core activity on surface physical and chemical investigations, in particular by means of scanning probe techniques (STM/STS/nc-AFM) and photoelectron-based methods such as XPS, ARPES and XPD, complemented by theory and atomistic simulations.

Latest publications

The Structure of Sub‐nm Platinum Clusters at Elevated Temperatures
T. Henninen et. al., Angew. Chem. Int. Ed., in press (2019). DOI: 10.1002/anie.201911068

Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing LiquidPhase Transmission Electron Microscopy
N. Ahmad et. al., ACS Nano in press (2019). DOI: 10.1021/acsnano.9b06614

Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons
J. Overbeck et. al., Physica Status Solidi B 1900343 (2019). DOI: 10.1002/pssb.201900343

On-surface synthesis of polyazulene with 2,6-connectivity
Q. Sun et. al., Chem.Comm. 55, 13466-13469 (2019). DOI: 10.1039/C9CC07168G