Transport at Nanoscale Interfaces Laboratory

Investigation of gravity-driven drainage and forced convective drying in a macroporous medium using neutron radiography.

Lal, S., Poulikakos, L. D., Jerjen, I., Vontobel, P., Partl, M. N., Derome, D., & Carmeliet, J.

Transport in Porous Media, 118, 119-142, 2017

https://doi.org/10.1007/s11242-017-0850-z

Abstract

The co-occurrence of gravity-driven drainage and forced convective drying in a macroporous medium is investigated in this study. The drainage and drying processes of fully saturated porous asphalt (PA) specimens placed in a custom-made mini wind tunnel are documented with neutron radiography (NR). Six PA specimens of dimensions 180×10×30mm3 with a maximum aggregate size of 8 or 11 mm are used in the experiments. In the first few minutes of each experiment, there is significant moisture loss in all the specimens due to gravity-driven drainage. Most of the residual water retention is observed at the bottom region of the specimens due to the strong impact of gravity-driven drainage in the upper regions. The specimens are subjected to many hours of airflow at their top surface; however, forced convection from turbulent airflow near the upper part of the specimens is found to have a minor influence on moisture loss when there are no water clusters in the upper regions of the specimens. This points to the strong resistance to evaporation in PA as a result of the large vapor diffusion lengths. By combining neutron radiography and microcomputer tomography (X-ray μ-CT) images, saturated and unsaturated flows in the pores are distinguished. Fluid flow path during air entry and water redistribution is further analyzed by reconstructing the real three-dimensional pore geometry of the specimens from X-ray μ-CT scans.