Ongoing projects

Ongoing research projects

Ongoing PhD projects                            

                                                                                                                                                         

 

Ongoing research projects

BEST

Swiss participation in IEA SHC/ECES Task 58/Annex 33 – Performance degradation in thermochemical energy storage from the material to the system scale.
This project is part of the newly started IEA SHC/ECES Task 58/Annex 33 „Materials and Component Development for Thermal Energy Storage“. The project contributes to the performance assessment of thermal energy storage materials and systems at different scales with the experience from the ongoing development of a seasonal thermal storage based on sodium hydroxide. Particular focus is laid on performance degradation during up-scaling from materials to pilot-scale systems.
Funding: Swiss Federal Office of Energy, Pilot and Demonstration Project
Contact: Luca Baldini

Swiss Competence Center for Energy Research “Heat and Electricity Storage” (SCCER HaE) – Phase II, WP1 Storage of Heat – Task 1 – Sorption-based Seasonal Heat Storage.
The major goal within this four years project is to increase the technology readiness level (TRL) of the technology from a 4 to 6-7. Development steps include lab-scale absorber testing, upscaling of lab-scale absorber to 5 kW, integration of upscaled absorber in hybrid pilot-scale plant from a former EU FP-7 research project COMTES and prototype storage plant installation in NEST/energy hub research facilities.
Funding: Innosuisse – Swiss Innovation Agency
Academic partners: Institute for Solar Technology SPF / University for Applied Sciences-HSR
Contact: Luca Baldini

Swiss Competence Center for Energy Research “Efficiency of Industrial Processes” (SCCER EIP) – Phase II, WP4 Decentralized Wastewater Management – Task 4 – Wastewater Heat Recovery
A significant potential of wastewater heat recovery has been identified at household level, which shall be explored in the course of Empa’s contribution to this SCCER. It is the goal to evaluate different available technologies and novel system combinations through simulation and punctually through experimental evaluation within NEST. Further, different integration options for wastewater heat recovery in buildings along with possibilities for technology/system developments with industry involvement will be evaluated and finally, guidelines and recommendations shall be deduced and made available for planning engineers in the field.
Funding: Innosuisse – Swiss Innovation Agency
Academic partners: Eawag – Aquatic Research, University for Applied Sciences-HSR, University of Applied Sciences FHNW
Contact: Luca Baldini

Energy Efficient Spa Technologies
Wellness facilities are on the rise all over Europe. The technology used for saunas and steam baths nowadays is based entirely on electric resistance heating and is therefore extremely energy-intensive and costly to operate. The project develops concepts and technologies based on high-temperature CO2 heat pumps, which can be expected to save 70% of electricity. In a full-scale test installation within the research and demonstration platform NEST the effectiveness of the solutions developed is being verified and operation is being optimized.
Funding: Commission for Technology and Innovation (CTI)
Partners: University of Applied Sciences Buchs NTB, University of Applied Sciences Lucerne HSLU (Research), Suissetec (Industry assocoiation), other industry partners
Contact: Robert Weber

 

MES

Swiss Competence Center for Energy Research – Future Energy Efficient Buildings & Districts SCCER FEEB&D
The vision of the Swiss Competence Center for Energy Research on Future Energy Efficient Buildings & Districts (SCCER FEEB&D) is to develop solutions for the Swiss building stock which will lead to a reduction of the environmental footprint of the sector by a factor of three by 2035 thanks to efficient, intelligent and interlinked buildings.
The SCCER FEEB&D is addressing this challenge in a combined effort by leading Swiss and international partners from academia, industry and the public sector.
Funding: Innosuisse – Swiss Innovation Agency
Partners: Empa, ETH Zurich, EPFL, HSLU, Uni Geneve, FHNW
Contact: Matthias Sulzer

Renewable powered district heating networks – Repodh
Space heating accounts for around 70% of the final energy consumption in Swiss households. Therefore, as Switzerland looks towards its 2050 CO2 emission targets which require an 80% reduction in annual CO2 emissions per capita, there is a pressing need to increase the utilisation of energy efficient and renewable heating sources in the residential sector. It is claimed that district heating networks powered by local thermal energy sources like renewables (such as solar thermal energy, heat pumps, or waste heat) are considered a sustainable way to cover future heating and cooling demands in urban areas. However, existing types of district heating networks are not designed for decentralized renewable energy sources, and their integration becomes a challenging task. Existing networks are typically built in a branching configuration, whereas future renewable powered networks tend to be in ring topologies. Also, the efficiency of a thermal network is very much dependent on temperature levels of the thermal energy sources. These temperature levels can be easily controlled in networks that rely on centralized thermal energy generation sources like combined heat and power (CHP) or boiler units. However, temperature levels of non-dispatchable renewables cannot be controlled as easily as they are highly time variant. Also, the efficiency of a thermal network is strongly coupled to the supply and demand temperatures and flow rates of consumers connected to the network, and with the more frequent utilization of renewable energy sources it will become increasingly challenging to cover the temporal mismatch of demand and supply. Based on this background, a deeper knowledge is required in order to evaluate the potential of renewable energy in thermal networks. This project aims to deepen the knowledge by developing a holistic modelling framework to design and ideally operate renewable powered district heating networks (RePoDH). In this project a bi-level simulation approach is envisioned, which employs detailed dynamic modelling tools to evaluate the thermal performance and control of a network, and a simplified multi-energy modelling representation allowing to optimize the system design, for which dynamic tools are too complex, and computationally intensive. The two simulation approaches will be connected with a geographical information system, to evaluate potential network configurations using geo-referenced information. With the modelling framework we will assess how networks with a high share of renewable energy sources should be designed, in order to improve the operation of the network in terms of security and energy autarky. Moreover, we will evaluate what types of districts are suitable for RePoDH networks, and what types of networks should be used for which district in order to contribute to reaching future emission targets for our society. 
Funding: SNF
Contact: Kristina Orehounig, Danhong Wang

Energy turnaround – Technical – Regulations – EnTer
The research project focusses on the aspect of technical regulations (TER). To support the achievement of the first mile stone of the energy strategy 2050 (ES2050) in the year 2035, which combination of regulatory measures, in particular energy regulations, can be most effective and efficient? The cantonal model regulations in the energy sector (MuKEn) are used as a research subject. Today's MuKEn2014 reaches technical, economical, and social boundaries. New methods, concepts and elements in the field of technical energy regulations are to be investigated and possibly considered in a future regulation.
Funding: SNF- NFP, EnDK
Partners: ETH-SuSTec, HSLU
Contact: Matthias Sulzer,  Kristina Orehounig

Urban densification and its impact on energy use in Swiss cities
This research project investigates the potential of urban densification and their resulting influence on the total energy consumption of neighborhoods and districts. With different computational methods, different scenarios of redensification and the resulting energy performance of neighborhoods will be investigated and compared. Project results shall support decision makers in regional and urban development processes in Switzerland.
Funding: BFE
Partners: KCAP, Wagner-Vanzella Architects
Contact: Kristina Orehounig

EBM - Electricity Based Mobility
The main goal of the EBM project is to compare future CO2 emissions from electricity based mobility to the conventional mobility technologies and their developments and show CO2 emission reduction potentials with those technologies. In this project, commissioned by the Competence Center Energy and Mobility (CCEM), the actual CO2 content of future electricity based mobility (EBM) is assessed in terms of CO2 emission per km driven. To this end, a Life Cycle Analysis (LCA) with respect to CO2 emissions is conducted on both vehicles and fuels. The CO2 intensity of the used electricity is based on different future passenger car fleet compositions, mobility demand and charging/fueling patterns. Moreover, strate-gies, such as time-delayed fuel production / electricity supply, are derived to minimize these grid-related CO2 emissions of EBM.
Funding Source: CCEM
Contact: Sinan Teske
Partners: PSI, ETHZ, EPFL

H2E - Study accompanying a P+D project for producing H2 at a run-of-river power plant in Aarau
As part of an R&D project funded by the Federal Office of Energy (FOE) on the hydrogen (H2) production at a run-of-river power plant, this accompanying study investigates in particular the arrangement. Based on the pilot operation at the Eniwa hydropower plant, it is analysed how the production of H2 by means of electrolysis for a logistics fleet of 200 fuel cell trucks can be integrated into the local and national electricity supply. The complex relationships between regional electricity production and consumption, the design of hydrogen production and filling stations, and the needs of fleet operation are analysed for a past year and an operating strategy for the H2 production is made.
Funding Source: H2 Energy AG
Contact: Sinan Teske
Partners: H2 Energy AG

 

ehub

Eco-friendly and Ageing-Aware Energy Management Software for Li-ions Battery (ECOBATTEM)
The main goal of the project ECOBATTEM is to experimentally proof that the large installation of battery storage systems (BSS) equipped with an ageing-aware energy management software is the best way to satisfy the 2050 Swiss Energy Strategy. The main reasons behind this goal are:

  • The BSS will allow to increase the energy self-consumption and consequently reduce the global CO2 emissions;
  • An ageing-aware strategy for BSS deployment allows for maximizing the lifetime of the BSS itself with a consequent large renewable energy self-consumption and CO2 reduction;
  • A BSS with a minimum state of ageing can be deployed by utility/DSO in order to provide ancillary services to the power grid (such as peak-shaving and frequency/voltage control)

Funding body: BFE
Partners: Aurora’s Grid LLC, Leclanché SA, HES-SO VD, HES-SO Fribourg
Contact:  Philipp Heer

Coherent Energy Demonstrator Assessment (CEDA)
In Switzerland, six energy demonstrators serve as research platforms for different technologies, systems, and scaling. In their analysis, CEDA will standardize these demonstrators in order to show the impact of existing technologies on nationwide implementation in Switzerland. For this purpose, Switzerland-wide communication and collaboration between four SCCERs will be carried out with a total of six demonstrators. The harmonized data collection and modelling of state-of-the-art technologies makes it possible to plan their use in industry more effectively. Case studies will be carried out in order to obtain a direct benefit from the foundation that has been developed. Empa's ehub provides ideal conditions for other demonstrators still in the planning or construction phase.

SAlt, LIthium-ion and SuperCapacitors storages in the distribution grid (SALISC)
Decentral Batteries or district sized battery installations provide a layer of flexibility to the distribution grid and its stakeholder. In SALISC Empa investigates in the design and operational stages of battery usages to determine their profitability in 2018 and in 2025. Multiple storage technologies, sizes, locations and control schemes are analyzed according the general conditions of a distribution grid of Glattwerke AG acting as DCO. The most promising solutions are implemented on the ehub platform and its storage technologies to exemplary validate the performance of the found solutions.
Especially the effect of Molten Salt (NaNiCl2) and Lithium Ion (NMC-G) Storages is investigated. The impact of additional of Super Capacitors shall highlight the significance of this technology to a storage setup in a distribution grid.
Funding body: Industry
Partners: Glattwerke AG, FZSonick
Contact: Philipp Heer

Efficient tethered drones for airborne wind energy (T10)
TwingTec develops together with Empa the next generation of wind energy using a tethered drone that flies like a kite. During this project a full scale tethered drone prototype will be developed and tested.
The goal of this project is to design, build and test a full scale tethered drone prototype for a 10kW pilot system. This prototype will address the two critical remaining challenges before development of an upscaled system can begin: efficiency and energy autonomy.
Funding body: Innosuisse
Partner: TwingTec AG
Contact: Philipp Heer

Algorithmic Regulation & Control: A novel hybrid data-driven approach for enhancing building performance along the life cycle (ARC)
In recent years, performance monitoring of buildings has become more common and the volume and resolution of data produced has increased significantly. This data opens up new possibilities for systematically improving building performance throughout the life cycle. Unlocking the potential for large-scale, data-driven performance improvement, however, necessitates the realization of effective feedback loops across different timescales (seconds to years) and spatial scales (building, city, canton, etc.). These feedback loops must be driven by a combination of rich, real-time data describing the state of the building stock and intelligent learning algorithms capable of effectively identifying and adapting feedback signals.

The aim of this project is to develop a transferrable methodology for algorithmic regulation and control of buildings and districts. A prototype ARC system will be implemented in NEST, the ehub facilities and the emerging dhub infrastructure. The project will result in the methodological elaboration and validation of the ARC approach, and a quantification of its potential to improve the energy performance of the Swiss building stock.
Funding body: Empa Board
Contact: Andrew Bollinger

 

Ongoing PhD projects

Felix Bünning

Building energy systems can be expected to undergo radical change in order to adapt to the needs of the future renewable energy environment. This includes the integration of renewable energy sources in the building itself (such as solar-thermal and PV), possibilities to interact with the electricity grid in smart-grids as a reserves provider, possible connection to novel district energy concepts such as combined heating and cooling networks, etc. Consequently, new concepts to control such systems are required, which leads to the following governing research questions:

What are the upcoming challenges in this field and how can they be tackled?
Novel technologies call for novel methods or the adoption of established control concepts. Electrical and thermal reserves through buildings, the integration of buildings in combined heating and cooling networks, renewable integration and other new topics are addressed by adapting existing control concepts to new problems and by developing new approaches based on data-driven methods and machine learning.

How can building and district energy control be made more real-life relevant, meaning cheaper and implementable?
Although proven effective, even conventional MPC for thermal zones has never found mass-adaption in the building energy industry so far, because the implementation is very complex and cost-inefficient. Thus, simplifications and new methods need to be found that allow intelligent control of district and building energy systems in real life applications.

Cristina Dominguez
Ensuring access to affordable, reliable, sustainable and modern energy for all was listed as one of the Sustainable Development Goals (SDG) proposed by the United Nations for the year 2030. Due to the strong link between electricity access and socioeconomic development, electrification projects are often listed as a top priority in developing countries. Still, according to the International Energy Agency, around 17% of the global population lack access to electricity, and 84% are located in rural areas from sub-Saharan Africa, Asia and Latin America. Due to the high investment required for infrastructure works to extend the electric grid to these areas, other potential solutions are developed, such as the installation of stand-alone systems and micro or mini-grids. For any chosen solution, the starting point is to have an accurate knowledge of the energy demand of these areas, which is currently estimated through field studies, knowledge transfer and other modeling tools. Due to the lack of reliable data for these areas, some of these methods make general assumptions and use macroeconomic drivers that do not represent the rural population, which results in an overestimation of the energy demand, consequently, in an overinvestment of resources.
The aim of this research is to develop a methodology to model the current and future energy demand of rural households in developing countries in order to improve and support the planning of rural electrification projects. This methodology is based on a hybrid approach combining bottom-up and top-down modeling techniques, utilizing available data from household to national level in order to create a robust framework that can be generalized to a broad geographic scope.

Portia Murray - Integration of sustainable multi-hub systems from the building performance perspective

website | poster

Developing a method to assess the best combination of technologies for decentralized district heating systems to analyze district heating performance on the neighborhood scale. Storage technologies are of particular focus in this research, especially power-to-gas and battery storage technologies for storing excess renewable energy during off-peak demand. These methods are compared against more traditional storage and conversion technologies, such as thermal storage tanks, heat pumps and boilers. All technologies are incorporated into both a centralized and decentralized Energy-Hub model on the neighborhood scale for analysis.

Emmanouil Thrampoulidis - Large-scale building retrofit towards more effective energy policies and strategies

The building sector accounts for more than 40% of the total energy consumption and  emissions in Europe. Building retrofit is of greatest importance to reduce the environmental footprint of the existing building stock. It may refer to two types of interventions: the first pertaining to interventions on the building envelope, for instance by enhancing the thermal insulation of a building’s walls, and the second one to building energy system replacements and renewable technologies integration. Even though building-specific solutions are important there is much more to gain if those are part of a coordinated large-scale retrofit plan. A more systematic and effective solution to derive energy policies, strategies and incentives is one of the benefits of such large-scale retrofit approaches.

Building retrofit is a complex process, which involves the use of highly heterogeneous building information (census data, 3D building data, weather data) and computationally intensive tools (multi-objective optimization, building simulation).  Usually, due to the limited timeline and investment of the retrofit projects the building process is extensively simplified, for instance by just performing some steady state calculations. Moreover, most large-scale retrofit projects are based on archetypes and arbitrary generalize. Eventually, such approaches might lead to results that highly deviate from reality.

Therefore, the aim of this research is to exploit the principled generalization ability of machine learning to develop a large-scale data-driven retrofit approach with the use of both simulation and real building data.  This approach can be more beneficial than the conventional ones in terms of: (i) generalization ability and adjustability, (ii) ease of application, (iii) retrofit selection time and (iv) computational cost. Last but not least, such a surrogate retrofit approach can contribute towards deriving more effective energy strategies and eventually accelerating the adoption of building retrofit measures.

Danhong Wang - Renewable powered district heating networks

website | poster

Space heating accounts for around 70% of the final energy consumption in Swiss households. Therefore, as Switzerland looks towards its 2050 CO2 emission targets which require an 80% reduction in annual CO2 emissions per capita, there is a pressing need to increase the utilisation of energy efficient and renewable heating sources in the residential sector. It is claimed that district heating networks powered by local thermal energy sources like renewables (such as solar thermal energy, heat pumps, or waste heat) are considered a sustainable way to cover future heating and cooling demands in urban areas. However, existing types of district heating networks are not designed for decentralized renewable energy sources, and their integration becomes a challenging task. Existing networks are typically built in a branching configuration, whereas future renewable powered networks tend to be in ring topologies. Also, the efficiency of a thermal network is very much dependent on temperature levels of the thermal energy sources. These temperature levels can be easily controlled in networks that rely on centralized thermal energy generation sources like combined heat and power (CHP) or boiler units. However, temperature levels of non-dispatchable renewables cannot be controlled as easily as they are highly time variant. Also, the efficiency of a thermal network is strongly coupled to the supply and demand temperatures and flow rates of consumers connected to the network, and with the more frequent utilization of renewable energy sources it will become increasingly challenging to cover the temporal mismatch of demand and supply. Based on this background, a deeper knowledge is required in order to evaluate the potential of renewable energy in thermal networks. This phd project aims to deepen the knowledge by developing a holistic modelling framework to design and ideally operate renewable powered district heating networks (RePoDH). In this project a bi-level simulation approach is envisioned, which employs detailed dynamic modelling tools to evaluate the thermal performance and control of a network, and a simplified multi-energy modelling representation allowing to optimize the system design, for which dynamic tools are too complex, and computationally intensive. The two simulation approaches will be connected with a geographical information system, to evaluate potential network configurations using geo-referenced information. With the modelling framework we will assess how networks with a high share of renewable energy sources should be designed, in order to improve the operation of the network in terms of security and energy autarky. Moreover, we will evaluate what types of districts are suitable for RePoDH networks, and what types of networks should be used for which district in order to contribute to reaching future emission targets for our society.