Technology Development

Sub-micrometre-scale 3D Chemical Characterization of Organic and Biological Materials

Novel technologies and measurement methods are developed to improve the quality and robustness of sub-micrometre-scale in-depth and 3D chemical characterization of soft organic and bio-materials. Piezo-motor-driven cryo-microtome modules to be operated inside a ToF-SIMS instrument and capable to perform in-situ consecutive layer-by-layer slicing of soft materials is designed. In parallel, the "standard" sputtering technique is refined. The complementarity of both techniques is evaluated via the study of two target systems: organic light-emitting device and collagen-based materials (see more).

Contact info: Dr. L. Bernard (,  M. Kawecki (                                      

Metro4-3D - Metrology for future 3D-technologies

As follow-up of the 3D NanoChemiscope project (see below), the Empa team here coordinates the development of novel operation modes and functionalities of the combined ToF-SIMS / SFM instrument. Novel data analysis routes are also developed to combine SFM and ToF-SIMS data, in order to achieve 2D and 3D chemical mapping with nanometre-scale lateral resolution (see more).

Contact info: Dr. L. Bernard (, Dr. O. Scholder (

TISBA - Tailored Interface for Structural Bonding of Aluminum (completed 2017)

Ar-cluster as Primary Ion Source in ToF-SIMS (completed 2015)

This CCMX-funded project in collaboration with the German company IONTOF aimed at studying the effect of Ar-cluster sputtering on materials surface roughening via scanning force microscopy (see more).

CCMX annual activity report 2014
Contact info: Dr Laetitia Bernard (


3D NanoChemiscope (completed 2013)

A combined ToF-SIMS / SFM instrument was jointly developed, built and tested in the framework of an FP7 European commission Program by Empa, the German company ION-TOF (world leader in ToF-SIMS technology) and 6 additional European partners, with the goal to permit 3D materials characterization with direct measurement of the structural, physical and chemical sample properties on a local scale (see more).

Press releases
CQFD interview
Contact info: Dr. Laetitia Bernard (