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Introduction

Market

Europe

• 22% bridges are metallic

• 70% are older than 50 years

Switzerland

• Swiss Federal Railways (SBB) has 5’051 railway bridges

• 25% of bridges older than 80 years are metallic riveted

Problems in Metallic Bridges

• Insufficient fatigue crack safety

• Need for upgrade to carry larger loads/traffic

• Most commonly used structural metals:

Steel, wrought irons, cast irons

Chajes et al. „Fracture: Field testing of the I-95 bridge.“ In Third Annual Bridge Workshop: Fatigue

and Fracture; Center of Innovative Bridge Engineering: Ames, IA,USA, 2004
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Kuehn et al. „Assessment of Existing Steel Structures: Recommendations for 

Estimation of Remaining Fatigue Life“; the Publications Office of the European 

Union: Luxembourg, 2008

Fisher, J.W. “Fatigue and Fracture in Steel Bridges”; Wiley-Interscience: Hoboken, USA, 1984

Daniel Hoan Memorial Bridge, Milwaukee, Wisconsin, Failure on the 13th of December 2000

Kuehn et al. „Assessment of Existing Steel Structures: Recommendations for Estimation of 

Remaining Fatigue Life“; the Publications Office of the European Union: Luxembourg, 2008

Examples of fatigue cracked bridges
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Examples of fatigue cracked bridges

Linthkanal-Brücke

Photos taken by Elyas Ghafoori, April. 2017
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Photos taken by Elyas Ghafoori, April. 2017
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Examples of fatigue cracked bridges

Propping-out of the

rivet head

Crack propagation in 

the outstanding leg

Crack propagation in 

the outstanding leg

Crack initiation in 

the angle fillet

Rivet failure: rivet 

head pop-out

Crack initiation in 

the fillet

Crack propagation

Crack propagation

Crack emanated 

from angle fillet

Rivet failure

Rivet failure

Crack grows in 

outstanding leg

Crack grows in 

outstanding leg

Double-angle connections

Rivet failure: rivet 

head pop-out

Rivet failure: rivet 

head pop-out
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Typical fatigue cracks that can be found near supports of metallic girders (due to 

change of stiffness) in metallic bridges 

Crack

Ref. Buildings, 2012. 2: p. 476-456)

A metallic bridge in Sweden

Examples of fatigue cracked bridges
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Introduction

Retrofit of metallic aircrafts

Retrofit

Bolted Aluminum patchFatigue crack in wing root fillet

Retrofit of F-100 wing structure

Baker, A.A., Repair of Cracked or Defective Metallic Aircraft Components with Advanced Fibre Composites: an Overview of Australian Work, Composite 

Structures 2 (1984) 153-181.
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Retrofitting of aircrafts with bonded

composite materials

BFRP patch bonded to the wing skin of a Mirage aircraft

BFRP Patches

CFRP patch bonded to the fuselage of an Orion aircraft

CFRP Patches

Schematic view of the underside of a Hercules upper wing plank showing 

location of typical stress-corrosion cracks. 

Cracks

Baker, A.A., Repair of Cracked or Defective Metallic Aircraft Components with Advanced Fibre Composites: an Overview of Australian Work, Composite 

Structures 2 (1984) 153-181.

Introduction

CFRP Patches
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Introduction: Why CFRP Laminates?

Traditional Strengthening Solutions:

• Steel: heavy

CFRP: 

• Excellent fatigue behavior

• High fatigue-to-weight ratio

Laminate type Laminate modulus

Low modulus (LM) < 100 GPa (ECFRP < 0.5 Esteel)

Normal modulus (NM) 100 –200 GPa (0.5Esteel ≤ ECFRP < Esteel)

High modulus (HM) 200–400 GPa (Esteel ≤ ECFRP < 2Esteel)

Ultra-high modulus (UHM) ≥400 GPa (ECFRP ≥2 Esteel)

Classifications of the CFRP laminates 

according to their Young’s modulus 

relative to that of steel:

More details in: Ghafoori E., Motavalli M. Normal, high and ultra-high modulus CFRP laminates for bonded and un-bonded strengthening of steel beams. Materials and Design, 2015. 67: p. 

232–243.
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Introduction: Change in CFRP Young’s Modulus 

The measured Young’s modulus for the NM, HM, and UHM 

CFRP laminates at different strain levels, indicating a non-linear 

elastic behavior for the CFRP laminates. 

The measured Young’s modulus of the NM, HM, and 

UHM CFRP laminates as a function of the applied 

strain. The square markers show the Young’s moduli 

provided by the manufacturers. 

More details in: Ghafoori E., Motavalli M. Normal, high and ultra-high modulus CFRP laminates for bonded and un-bonded strengthening of steel beams. Materials and Design, 2015. 67: p. 

232–243.
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Introduction: Some of Typical Failure Modes of Steel Beams 

Bonded with CFRP Plate
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• The main difference between FRP–steel and FRP–concrete bonded joints is that in the former, failure will likely occur in the

adhesive layer and in the latter failure is expected to occur in the concrete. Therefore, by providing an adequate bond length,

the optimal strength of a bond joint is dependent on the fracture energy of the adhesive for the former and the fracture

energy of the concrete for the latter.

• In FRP-strengthened steel structures, interfacial failure should happen within the adhesive layer in the form of cohesion

failure to maximize the effectiveness of FRP strengthening.

• Inappropriate surface preparation of the steel substrate prior to the bond application may result in an adhesion failure at the

steel-to-adhesive interface.

Concrete

Concrete failure

Introduction: Possible Failure Modes of CFRP-to-

Concrete/Steel Bonded Joints
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Flexural Strengthening
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Steel Beam Strengthened by a Prestressed Bonded Plate

More details in: Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M. Fatigue design criteria for strengthening metallic beams with bonded CFRP plates. Engineering Structures, 

2015. 101: p. 542-557
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Beam strengthened by the bonded CFRP laminate in a four-point bending set-up. 

By applying the boundary conditions for the above four-point bending set-up: 

From (1) & (7) =>

Stress in bottom flange: 

More details in: Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M. Fatigue design criteria for strengthening metallic beams with bonded CFRP plates. Engineering Structures, 

2015. 101: p. 542-557
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More details in: Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M. Fatigue design criteria for strengthening metallic beams with bonded CFRP plates. Engineering Structures, 

2015. 101: p. 542-557
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More details in: Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M. Fatigue design criteria for strengthening metallic beams with bonded CFRP plates. Engineering Structures, 

2015. 101: p. 542-557
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Actuator
LVDT

Bonded CFRP laminate

Supports
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Experiments of steel beams 

with σy=235 MPa

Comparison of load-deflection behaviors of two steel 

beams with σy=235 MPa, one unstrengthened and one 

strengthened with a 40% prestressed bonded CFRP plate, 

both loaded in a four-point bending set-up

More details in: Ghafoori E., Motavalli M., Flexural and interfacial behavior of metallic beams strengthened by prestressed bonded plates, Composite Structures, 101 (2013), 22-34. 
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Strengthening against Lateral Torsional Buckling
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Definition of Lateral Torsional Buckling (LTB)

 The LTB failure is often triggered in slender beams, which do not have sufficient lateral supports, due to eccentricities, 

and can occur at load levels that are below yield capacity.

 These eccentricities, in reality, can be due to the geometrical imperfections of the beam itself or the position of the loads. 

 The eccentricity generates a bending moment about the longitudinal axis, which displaces the compression flange 

laterally away from the loading plane, while the tension flange tends to keep the beam straight, and thus, the beam cross 

section is twisted. 

 This twisting in combination with the lateral displacement of the beam is called the LTB failure and could occur well 

before the yielding capacity of the steel cross section is reached. 

More details in: Ghafoori E., Motavalli M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: experimental and 

numerical study. Construction and Building Materials, 2015. 76: p. 194–206.



Steel Strengthening Fibre Composites Hossein Heydarinouri 24

Mechanisms of Strengthening against LTB

Two retrofit mechanisms: 

 Increasing out-of-plane stiffness of the beam using UHM CFRP laminates

For the LTB failure, the specimen buckles out of the plane under flexural loading, and the CFRP laminates can affect the 

buckling capacity of the retrofitted beams by stiffening the steel cross section around the weak axis. Application of the 

ultra-high modulus CFRP laminates increases the out-of-plane stiffness of the specimens, and consequently, the buckling 

strength of the beams increases.

 Applying tension to the top flange of the beam using pre-stressed CFRP laminates

Whether the prestressed CFRP laminate leads to tensile or compressive stresses in the top flange depends only on the 

profile geometry. Assuming that the prestressing is applied on the bottom surface of the bottom flange, the stresses in the 

top flange caused by the axial force and by the bending moment can be calculated as:

hA

pp

top

ph / 2 h P I
0 h 2.

I 2 A A
       Condition for top flange to be in tension

More details in: Ghafoori E., Motavalli M. Normal, high and ultra-high modulus CFRP laminates for bonded and un-bonded strengthening of steel beams. Materials and Design, 2015. 67: p. 

232–243.
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Important Notes on CFRP Strengthening against LTB

I
h 2.

A


 Note: Application of CFRP laminates to the tension face of the steel beams increases the in-plane bending strength and also the lateral 

buckling strength; however, the former increases more significantly. This arrangement could change the failure mode of the steel

beam from in-plane bending to the buckling failure mode after CFRP strengthening. This need to be check in advance! 

+ = h

+ =
h

Compression due to

CFRP stress level of X

Moment due to 

external loading

Resulting

stresses
Negative moment due to

CFRP stress level of X

+

Compression due to

CFRP stress level of 2X

Moment due to 

external loading

Resulting

stresses

Negative moment due to

CFRP stress level of 2X

+

 When , use of CFRP laminates with high pre-stress levels is NOT recommended! Instead, we can use UHM laminates.

Stress distribution in the beam cross-section for the two different pre-stress levels of X % and 2X %.



More of cross-section is 

under compression

Higher probability 

of buckling 

More details in: Ghafoori E., Motavalli M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: experimental and 

numerical study. Construction and Building Materials, 2015. 76: p. 194–206.

P =X or 2X

F

P =X or 2X
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Fatigue Strengthening
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Fatigue Strengthening 

 Cracked metallic members: 

Rivet

Cross beamStringer

Stringer

Cross beam

 Healthy metallic members: 

Floor-beam

Slipper
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Fatigue Strengthening of Healthy Metallic Members

Rivet

Cross beamStringer

Stringer

Floor-beam

Slipper
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Design criterion for fatigue strengthening of steel girders using bonded CFRP laminates
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Fatigue Theory
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Fatigue Theory
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Laboratory Verifications

3
3265

Crack initiates 

from hole

Fatigue crack 

grows in web

Sudden failure

Fatigue crack growth

Debonded CFRP laminate

50

Video
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More complicated case: multiaxial fatigue

Load

Load

out-of-plane deformation
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More complicated case: multiaxial fatigue

StringerStringer

Floor-beamLoad Load

Floor-beam

Load Load

StringerPPMP MP

Clamping system

Prestressed CFRP rod

Clamping system

Reducing the out-of-plane 

deformation by prestressing 

force

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Multiaxial fatigue criteria for prestressed strengthening of steel 

connections. International Journal of Fatigue, 153, 106470. 
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More complicated case: multiaxial fatigue

Stress state in the 

critical location of 

the angles, i.e., on 

the angle fillet.

P
MF

MP

Actuator

Cantilever beam

Rigid column

F

Clamping systemPrestressed 

element

View A
View A

F

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Multiaxial fatigue criteria for prestressed strengthening of steel 

connections. International Journal of Fatigue, 153, 106470. 
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More complicated case: multiaxial fatigue

Critical plane approach
,max n

a

• τa : Maximum shear stress amplitude

• σn,max :Maximum normal stress on the critical plane


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, safea
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More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Multiaxial fatigue criteria for prestressed strengthening of steel 

connections. International Journal of Fatigue, 153, 106470. 
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More complicated case: multiaxial fatigue

Critical plane approach
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More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Multiaxial fatigue criteria for prestressed strengthening of steel connections. International Journal of 

Fatigue, 153, 106470.
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Conclusiones

 The advantages of the proposed design approach:

1. It is a proactive strengthening approach,

2. It takes into account the combined effects of mean stress and alternating stress levels.

3. It can be applied in more complicated case of multiaxial fatigue.

 Two main fatigue retrofit mechanisms for healthy metallic members:

1. to decrease the mean stress level by using pre-stressed laminate

2. to decrease mean and alternating stresses proportionally by using ultra-high modulus laminate 

More details in: Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M. Fatigue design criteria for strengthening metallic beams with bonded 

CFRP plates. Engineering Structures, 2015. 101: p. 542-557.
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Case Study:

Fatigue Strengthening of Münchenstein Railway Bridge
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 The Münchenstein rail disaster on 1891 is historically the worst railway accident ever in Switzerland. The bridge had 

been built in 1875 by Gustave Eiffel, who built the Eiffel Tower later in 1889.

 Prof. Ludwig von Tetmajer, the first director of Empa, was commissioned to investigate the cause of this collapse. His 

investigation led to modification of Euler’s formula for buckling of slender bars. 

1891 2013

Bridge History
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 Based on the verifications done by an engineering office*, the cross-beams of

Münchenstein Bridge were the fatigue critical elements if further bridge serviceability

after 2030 is intended.

 Therefore, the goal of a pilot project was to demonstrate the capability and the

effectiveness of a pre-stressed un-bonded strengthening system to reinforce this bridge.

*Private report submitted to SBB: Ingenieurbüro SIA HUBER+GEMPERLE, Schlussbericht Tragwerksbeurteilung Brücke I, Münchenstein, Page 6, 2010.

Bridge History
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Rivet

Cross beamStringer

Stringer

1. Applicable to unsmooth surfaces (i.g., 

riveted beams).

2. Fast installation (no gluing & no surface 

preparation).

3. Easy to prestress (no hydraulic jacks).

4. No traffic interruptions for bond curing.

Cross beam

Cross beam

PUR System
Prestressed un-bonded retrofit (PUR)

Column (permanent)

Clamp (permanent)

Cross beam

5.   Minimum damage (no hole, glue & grinding).

6.   Adjustable prestressing level (to compensate relaxation).

7. Easy to remove.

Prestressing chair (temporarily)
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5000

23

Detail of rivet holes in bottom 

flange of beam

Dimensions in mm

Cyclic loading

Laboratory Experiments
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Laboratory Experiments
Video
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270

Sa (MPa)

Sm (MPa)

Gerber line

Modified Goodman line

417-417

417

540

1

2 3 45

Fatigue test 1 (beam 1),   not strengthened: F=[2.5-68] kN  ->   N=  500’000 cycles  ->   cracked

Fatigue test 2 (beam 2), 30% prestressing:  F=[2.5-68] kN  -> ΔN=2’000’000 cycles  ->  No crack

Fatigue test 3 (beam 2), 22% prestressing:  F=[2.5-68] kN  -> ΔN=3’000’000 cycles  ->  No crack

Fatigue test 4 (beam 2), 14% prestressing:  F=[2.5-68] kN  -> ΔN=3’000’000 cycles  ->  No crack

Fatigue test 5 (beam 2),   4% prestressing:  F=[2.5-68] kN  -> ΔN=1’500’000 cycles  ->  cracked

Mode-I Fatigue Crack

Laboratory Experiments



Steel Strengthening Fibre Composites Hossein Heydarinouri 49

Mechanical friction clamp
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Humidity and 

temperature sensors
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Case Study:

Fatigue Strengthening of Aabach Railway Bridge Connections
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Aabach Bridge in Lachen, Switzerland

• Riveted railway bridge

• Built in 1928

• Total Length: 38.7 m

• Subjected to passenger and freight trains
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Aabach Bridge in Lachen, Switzerland

Strengthening of the connections

Temperature and 

humidity node

Node for strain 

gauge

strain 

gauge

Protective 

cap

Rosette strain gauge for the 

short-term measurements

SG

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge using prestressed 

CFRP rods: Multiaxial fatigue design criterion. J Bridge Eng, 26(6), 04021023. 
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Aabach Bridge in Lachen, Switzerland

Strengthening of the connections

Strengthening effect on the stresses due to passage of passenger trains.
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Strengthening system reduced on only the mean stress, and not the stress range.

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge 

using prestressed CFRP rods: Multiaxial fatigue design criterion. J Bridge Eng, 26(6), 04021023. 
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Aabach Bridge in Lachen, Switzerland

Strengthening of the connections

 MWCM diagram to evaluate the fatigue state before and after strengthening. 
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The effectiveness of the strengthening system in reducing the 

stresses depends on the type of the train.

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge 

using prestressed CFRP rods: Multiaxial fatigue design criterion. J Bridge Eng, 26(6), 04021023. 
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Aabach Bridge in Lachen, Switzerland

Strengthening of the connections

 Long-term monitoring

Stress history of the CFRP rods

No prestressing loss occurred in the CFRP rods since the installation.

Temperature and 

humidity node

Node for strain 

gauge

strain 

gauge

Protective 

cap

More details in: Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge 

using prestressed CFRP rods: Multiaxial fatigue design criterion. J Bridge Eng, 26(6), 04021023. 
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Conclusions: Prestressed vs. Non-prestressed CFRP Plates

Advantages:

 Utilization of high tensile strength of CFRP materials

 Prestressed FRPs can carry both a portion of the dead load and the additional live load carried by the 

structure

 Increasing yielding load

 Increasing ultimate load capacity

 Substantial increase in fatigue life

 Possible arrest of existing fatigue cracks
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Conclusions: Prestressed vs. Non-prestressed CFRP Plates

Disadvantages:

 Large amount of labor work for prestressing (you can almost forget about CFRP cost).

 High interfacial shear stresses at plate ends => earlier debonding => use of mechanical anchorage system



Steel Strengthening Fibre Composites Hossein Heydarinouri 60

Conclusions: Bonded vs. Un-bonded CFRP-steel Composite Systems

 Weak point:

The main difference between FRP–steel and FRP–concrete bonded joints is that in the former, failure will likely occur in the 

adhesive layer and in the latter failure is expected to occur in the concrete. Thus the weakest point an FRP-steel composite 

systems is the adhesive. 

 Surface preparation:

Prior to bond application, surface of steel beam should be cleaned and all paint and anti-corrosion coating have to be 

removed.

 High temperature:

Compared to concrete, steel has a high thermal conductivity (about 50 W/mK) and has significant ability to transfer heat 

rapidly to the adhesive. Moreover, the rate of sunlight absorption by steel is much greater than the rate of steel 

electromagnetic radiation (black body radiation); therefore, steel members exposed to direct sunlight on a hot day will easily 

become much hotter than the ambient temperature. This effect makes the adhesive adjacent to a hot steel surface soften 

excessively when the service temperature of the steel substrate approaches the glass transition temperature of the adhesive.

 Metallic riveted bridges: 

Due to the flat configuration of FRP plates, they cannot be bonded to the surface of structures that are not sufficiently smooth. 

Because the cover plate is riveted to the steel girders in steel-riveted bridges, for example, there is a high rivet density and the 

bonded FRP reinforcement system cannot be used.

 Heritage structures: 

The components of strengthening systems for heritage structures need to be designed for easy removal when there is a need to 

restore the structure to its original unstrengthened construction design. In a bonded reinforcement system, FRP strengthening

materials cannot be easily separated from the beam due to the applied glue.

More details in: Ghafoori E, et al., Fatigue strengthening of damaged steel beams using unbonded and bonded prestressed CFRP plates, International Journal of Fatigue, 2012, 44 , pp. 303-315.
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