Design of FRP-Profiles and All-FRP-Structures

ETHZ Course No. 101-0167-01

Prof. Dr. Moslem Shahverdi

Leader of "Advanced Structural Materials" at Empa Structural laboratory
Empa , Swiss Federal Laboratories for Materials Science and Technology
Überlandstrasse 129, 8600 Dübendorf. Switzerland
Tel +41 58 765 4382, email: moslem.shahverdi@empa.ch

References:

- Bank, L. "Composites for Construction Structural Design with FRP Materials," John Wiley & Sons, Inc., 2006. (Chapters 12 - 15)
- Fiberline. "Fiberline Design Manual," www.fiberline.dk, 2003.
- Clarke, JL. (Ed.) "Structural Design of Polymer Composites EUROCOMP Design Code and Handbook," E & FN Spon, 1996.
- Shahverdi, M., "Mixed-mode static and fatigue failure criteria for adhesively-bonded FRP joints". PhD Thesis, EPFL, Switzerland, 2013.

Outline

Introduction

(Pro's and con's of FRP / Examples)

Materials

(Manufacturing process / Materials / Durability)

Design Concept

(Concept / Basic assumptions / ...)

Bending Beam

(Timoshenko theory / Stresses / Deformations / Buckling ...)

Axial Members

(Serviceability and ultimate limit states)

Connections

(Bolted joints / Glued joints)

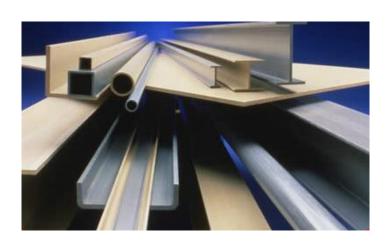
Introduction

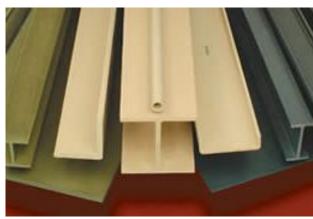
Introduction: Pro's and con's

- Pro's
 - High specific strength:

Material	CFRP	GFRP	Steel S500
$l_{\text{max}} = \frac{\sigma_{\text{max}}}{\rho \cdot g}$	138.4 km	27.8 km	6.4 km

- Good in-plane mechanical properties
- High fatigue and environmental resistance
- Adjustable mechanical properties
- Lightweight-> ease of handling, small additional load...
- Quick assembly / erection
- Low maintenance
- Highly cost-effective (2-10 €/kg)


Introduction: Pro's and con's


- Con's
 - Brittle
 - High initial costs
 - Low to moderate application temperature (-20 up to 80 °C)
 - Low fire resistance (sometimes with unhealthy gases)

Introduction: Common profiles

Structural profiles

- Most structural profiles produced in conventional profile shapes similar to metallic materials
- Similarity in geom. and properties, however no <u>standard</u> geom.,
 mechanical and physical properties used by all manufacturers

Structural profiles

Non-structural profiles

Footbridges

Fiberline Bridge in Kolding, DK

1997

The bridge was installed during 18 hours over 3

nights

Span: 40 m

Cost: 0.5 mio CHF

Only Fiberline standard profiles used

http://fiberline.com/fiberline-bridge-kolding

Pontresina bridge, Switzerland

1997

Span: 2 x 12.5 m

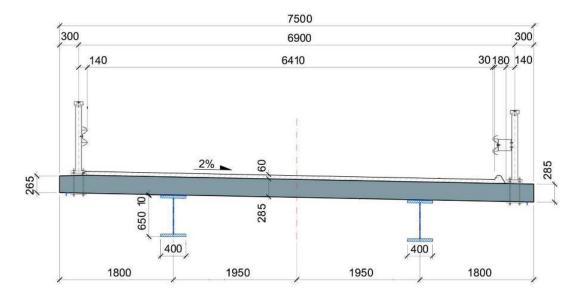
Weight: 3.3 tons (installation by helicopter)

http://fiberline.com/pontresina-bridge-switzerland

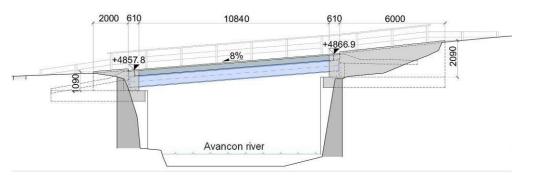
Footbridges

Composite pedestrian bridge in Lleida, Spain

Span: 38 m Width: 3.0 m


http://fiberline.com/international-award-innovative-grp-footbridge

"GRP does not conduct electricity, which is also very important as it means there is no magnetic interference with the electrified railway," continues Mr. Sobrino.


Introduction: Examples (Avançon Bridge, Switzerland, 2012)

Road bridges

Cross section of new two-lane bridge (dimensions in [mm])

Longitudinal section of new bridge (dimensions in mm) [Prof. Keller]

Bridge details

Location: Bex, Suisse

Installed on: 12th October, 2012

Dimensions: 12m x 7m (9 tons)

Bridgedeck (Footbridges)

Würenlos, Switzerland

Loopersteg, Switzerland

Buildings

Eyecatcher Building, Basel, Switzerland 1998

Height: 15 m Storeys: 5

http://www.fiberline.com/gb/casestories/case1835.asp

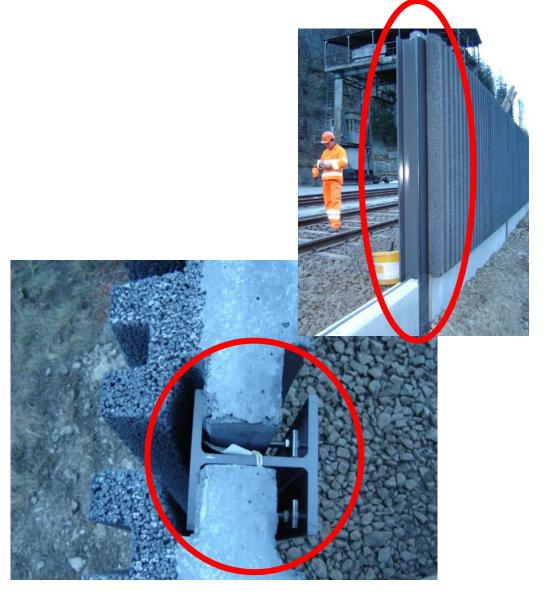
Project: Maagtechnic

Laboratory bridge

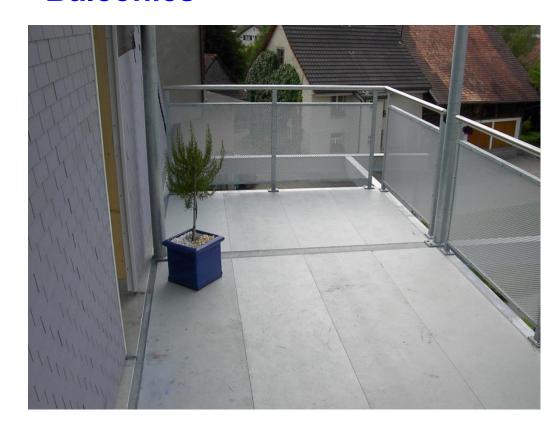
Empa Laboratory Bridge, Switzerland

Span: 19 m Width: 1.6 m

Load capacity: 15 tons



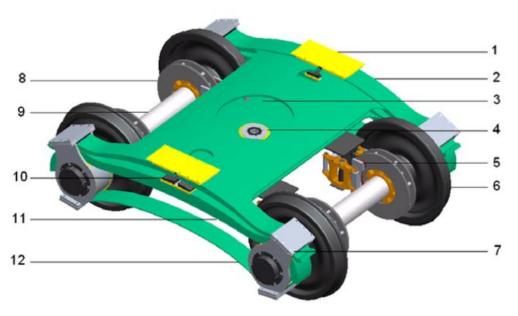
Noise barrier SBB



Göschenen, Switzerland

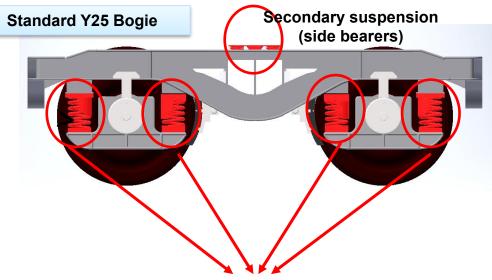
Project: Maagtechnic

Balconies

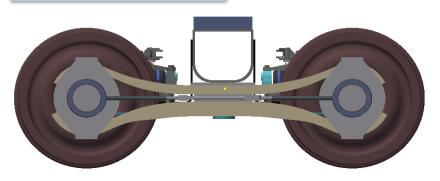


Project: Maagtechnic

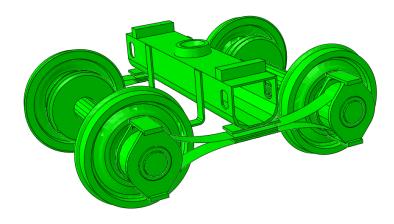
Introduction: Examples bogie


Summary of the name and material of each part shown in Fig

Number	Name	Material
1	Side bearer	Polyurethane, nylon and rubber
2	Upper bogie frame	Glass fibre reinforced epoxy
3	Lower bogie transom	Glass fibre reinforced epoxy
4	Central pivot point	Steel, rubber and polyurethane
5	Calliper	Steel, rubber and brake pads
6	Wheel	Steel
7	Axlebox	Steel, rubber and polyurethane
8	Brake disc	Steel
9	Axle	Steel
10	Bogie frame bearer	Rubber, polyurethane
11	Lower bogie frame	Glass fibre reinforced epoxy
12	Axle tie	Glass fibre reinforced epoxy


Hou, J. and G. Jeronimidis, A novel bogie design made of glass fibre reinforced plastic. Materials & Design, 2012. 37: p. 1-7.

bogie


o Metallic coil spring are replaced by FRP leaf springs, i.e. suspension system is integrated to the FRP frame

Hybrid GFRP bogie

Primary suspension inner and outer coil springs

Introduction: Application

- Applications where GFRP structures are competitive:
 - Significant corrosion and chemical resistance is required (Food and chemical processing plants, cooling towers, offshore platforms ...)
 - Electromagnetic transparency or electrical insulation is required.
 - Light-weight is cost essential (fast deployment ...)
 - Prestige and demonstration objects
 (e.g. Novartis Campus Entrance Building)

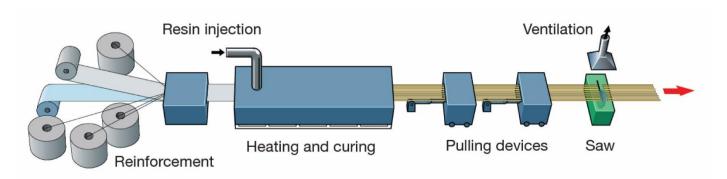


Photo: Prof. Th. Keller. EPFL

Material

Material: Pultrusion process

Only pultruded GFRP profiles will be considered in this lecture

Pultrusion line

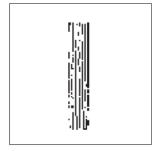
- Production of profiles with constant cross-section along the length
- High quality
- Continuous longitudinal fiber bundles and filament mats

Pultrusion process

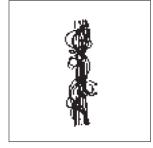
Take from [https://www.youtube.com/watch?v=aXq1hrzne2k]

Material: Components

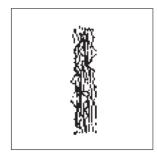
Pultruded profiles contain three primary components:

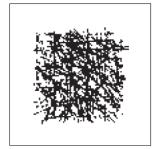

- Reinforcement
- Matrix

polyester epoxy phenol


Supplementary constituents

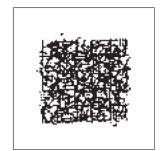
polymerisation agents fillers additives

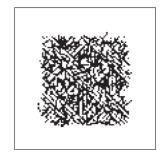

Types of roving



Spun

Mock


Types of mat


Continuous mat
Random fibre orientation

Weave 0°/90°

Complex mat 0°/90° membrane + random fibre orientation

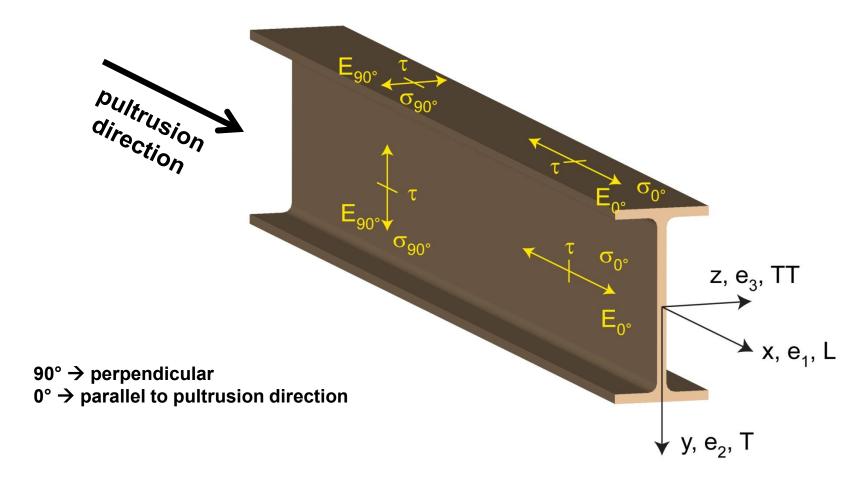
Bidirectional complex mat 0°/±45°/90° weave + random fibre orientation

Material: Shapes of pultruded profiles

Available Profiles on Stock:

								mmm
Name	Tubes	Flat - Profiles	Square Tubes	T - Profile	Angle	U / UL - Profile	I / IL - Profile	Plank
Dimensions [mm]	Ra = 37.5 / 45 T = 5	B = 30 - 1220 H = 6 -12	H = 50 - 240 T = 5 - 12	H = 60 / 90 B = 60 / 72 T = 6 / 10	H = 50 - 150 B = 50 - 150 T = 6 - 12	H = 120 - 360 B = 60 -180 T = 6 - 18	H = 120 - 360 B = 60 -180 T = 6 - 18	B = 500 H = 40

Length up to 12 m (for transportation reasons)!


 Special cross-sections can be designed and ordered (several kilometres are necessary → special tools have to be designed)

Material: Durability

- Various environmental and load conditions that affect durability of (G)FRPs in terms of strength, stiffness, fiber/matrix interface integrity, cracking:
 - water/sea water
 - chemical solutions
 - prolonged freezing
 - thermal cycling (freeze-thaw)
 - elevated temperature exposure
 - UV radiation
 - creep and relaxation
 - fatigue
 - fire...

Design Concept: Basic Assumptions

Definitions and directions

Codes

- Every manufacturer has its own profile design → No European Design Code is available! (only EN13706, about testing and notation)
- There exists European guidelines: EUROCOMP 1996 Design Code EUROCOMP 1996 Handbook
- Fiberline Design Manual is based on Eurocomp 1996.
 - Design concept (according to Eurocodes and Swisscodes)
 - Partial safety factors
 - Measured material parameters
 - Rules for bolted connections

- Concept of Limit State Design (According to Euro Codes and Swiss Codes)
- Ultimate limit stress

$$E_d \leq R_d$$

E_d ... Calculated stress (including load factors) ... SIA260 / 261

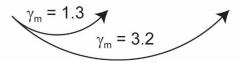
R_d ... Rated value of the resistance capability

where
$$\mathbf{R}_{d} = \frac{\mathbf{R}_{k}}{\gamma_{m}}$$

R_k ... the resistance capability

 γ_m ...the reduction coefficient / partial safety factor

■ Partial safety factor $\gamma_{m} = \gamma_{m,1} \cdot \gamma_{m,2} \cdot \gamma_{m,3} \cdot \gamma_{m,4}$

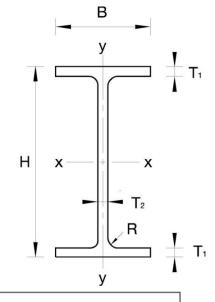

Coefficient	Description	Max. γ _m	Min. $\gamma_{ m m}$	Fiberline
$\gamma_{ m m,1}$	Derivation of mat. properties	2.25	1.15	1.15
$\gamma_{ m m,2}$	Degree of postcuring	1.6	1.1	1.1
$\gamma_{\mathrm{m,3}}$	Production process	2.0	1.0	1.0
$\gamma_{ m m,4}$	Operating temperature			A

Operating temperature °C	$\gamma_{_1}$, m,4			
temperature C	Short-term load	Long-term load			
-20 +60	1.0	2.5			
80	1.25	3.13			

Design Concept: Basic Assumptions

Material Properties, stength values (Fiberline Profiles)

			1/γ _m			
All values given in [MPa]		Typical strength values	Reduced strength values short-term long-term			
Flexural strength, 0°	f _{b,0°}	240	185	75		
Flexural strength, 90°	f _{b,90°}	100	75	30		
Tensile strength, 0°	$f_{t,0}$ °	240	185	75		
Tensile strength, 90°	f _{t,90°}	50	40	15		
Compressive strength, 0°	f _{c,0°}	240	185	75		
Compressive strength, 90°	f _{c,90°}	70	55	20		
Shear strength (in-plane)	f_{τ}	25	20	8		


Serviceability limit states

$$E_d \leq C_d$$

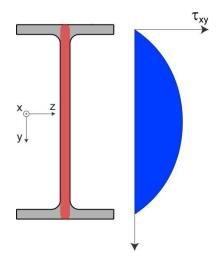
- E_d ... the crucial action effect due to the load cases considered in the investigated dimensioning situation. Typically maximal deflection response of the structure.
- C_d ... corresponding serviceability limit. SIA 261

Design Concept: Basic Assumptions

Typical data sheet of a profile (Fiberline I-Profile)

I-profile	Н	В	T 1	T_2	R	Α	A _{k, y}	$A_{k,x}$	g	I_{xx}	\mathbf{W}_{xx}	I_{yy}	W_{yy}	E 0°	E_{0} · I_{xx}
HxBxT 1)	mm	mm	mm	mm	mm	mm^{2}	mm^2	mm^2	kg/m	mm ⁴	mm^3	mm ⁴	mm^3	MPa	Nmm ²
factor	1	1	1	1	1	10 ³	10 ³	10 ³	1	10 ⁶	10 ³	10 ⁶	10 ³	10 ³	10 ⁹
I120x60x6	120	60	6	6	7.5	1.42	0.68	0.58	2.55	3.10	51.7	0.22	7.30	23	71.30
I160x80x8	160	80	8	8	8	2.49	1.22	1.02	4.48	9.66	121	0.69	17.3	28	270.5
I200x100x10	200	100	10	10	10	3.89	1.90	1.60	6.99	23.6	236	1.69	33.7	28	660.8
1240x120x12	240	120	12	12	12	5.60	2.74	2.30	10.1	48.9	408	3.50	58.3	28	1369
I300x150x15	300	150	15	15	15	8.74	4.28	3.60	15.7	119	796	8.54	114	28	3332
I360x180x18	360	180	18	18	18	12.6	6.16	5.18	22.7	248	1376	17.7	197	28	6944

Bending Beam


Bending Beam: Design of ...

- Calculate bending moments Md and shear forces Qd acting on the profile, using the appropriate load factors (SIA 260 / 261)
- Ultimate limit state

■ Bending:
$$\sigma_{\text{max}} = \frac{M_{\text{d},y,\text{max}}}{W_y} \left(+ \frac{M_{\text{d},z,\text{max}}}{W_z} \right) \le \frac{f_{b,0^{\circ}}}{\gamma_m}$$

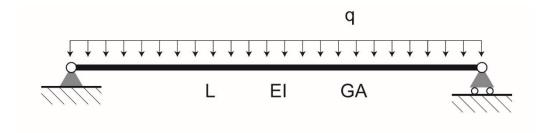
Shear: $\tau_{\max} = \frac{\mathcal{Q}_{d,y,\max}}{A_{k,v}} \leq \frac{f_{\tau}}{\gamma_m}$

A_k ... relevant shear area

Bending Beam: Design of ...

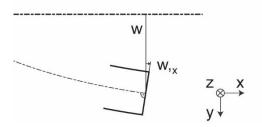
- Serviceability limit state
 - Deflection limit: $\frac{w_{\text{max}}}{L} < \frac{1}{\alpha}$

lpha ... typically selected between 200 and 400 given by SIA 261 or the building owner


 $w_{\rm max}$... calculated including shear deformations

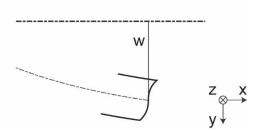
Vibrations

Light-weighted and 'soft' structures are susceptible to vibrations (traffic, wind, the movement of people ...)!!


Bending Beam: Timoshenko Theory

- Pultruded profiles have a low shear modulus → shear deformation must be taken into account!
- Several bending theories have been published for beams:
 - Euler-Bernoulli theory (1702)
 - Timoshenko theory (1968)
 - Higher order beam theory
- A simply supported beam with a symmetric cross-section is discussed

Bending Beam: Timoshenko Theory


Euler- Bernoulli

Timoshenko

Higher order

Cross-sections plane and perpendicular

1 degree of freedom

W

Cross-sections plane but **NOT** perpendicular

2 degrees of freedom

w and ψ

Cross-sections do **NOT** remain plane

3+ degrees of freedom

w, **ψ** and ...

Kinematic relationships

$$u_x = -y \cdot w(x),_x$$
$$u_y = w(x)$$

$$\varepsilon_{x} = \frac{\partial u_{x}}{\partial x} = -y \cdot w(x),_{xx}$$

$$2\varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} = 0$$

$$u_x = -y \cdot \psi(x)$$

$$u_y = w(x)$$

$$\varepsilon_{x} = \frac{\partial u_{x}}{\partial x} = -y \cdot \psi(x),_{x}$$

$$2\varepsilon_{xy} = \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} = -\psi(x) + w(x),_{x}$$

Hook's law

$$\sigma_x = E_{0^{\circ}} \cdot \varepsilon_x$$
 and $\tau_{xy} = G \cdot 2\varepsilon_{xy}$

$$M_z = \iint_{QS} -y \cdot \sigma_x \cdot dy dz = w_{,xx} \cdot E_{0^{\circ}} \cdot I_z$$

$$M_z = \iint -y \cdot \sigma_x \cdot dy dz = \psi,_x \cdot E_{0} \cdot I_z$$

$$Q_{y} = \kappa \iint_{QS} \tau \cdot dy dz = (w_{,x} - \psi) \cdot \kappa \cdot GA$$

Equilibrium

In a first approximation, the deflections are calculated by direct integration of:

$$w_{,xx} = \frac{M(x)}{E_{0} \cdot I_z}$$

Equilibrium on an infinitesimal beam element:

$$q(x) = -Q,_x = -(w,_{xx} - \psi,_x) \cdot \kappa \cdot GA$$

$$M,_x - Q = \psi,_{xx} \cdot E_{0} \cdot I_z + (w,_x - \psi) \cdot \kappa \cdot GA = 0$$

Coupled second order differential equation

Solution for the simply supported beam (distributed load)

$$M(x) = \frac{1}{2}qLx - \frac{1}{2}qx^{2} , w(0) = 0 \text{ and } w(L) = 0$$

$$w_{,xx} = \frac{1}{E_{0^{\circ}} \cdot I_{z}} \left(\frac{1}{2}qLx - \frac{1}{2}qx^{2} \right)$$

$$w(x) = \frac{qx}{24 \cdot E_{0^{\circ}} \cdot I_{z}} \cdot \left(L^{3} - 2Lx^{2} + x^{3} \right)$$

$$w(0) = 0$$
 and $w(L) = 0$
 $M(0) = 0 \rightarrow \psi_{,x}(0) = 0$ and $M(L) = 0 \rightarrow \psi_{,x}(L) = 0$

Functions:

$$w(x) = A_1 x^4 + A_2 x^3 + A_3 x^2 + A_4 x + A_5$$

$$\psi(x) = B_1 x^3 + B_2 x^2 + B_3 x + B_4$$

Put in $\psi_{,xx} \cdot E_{0} \cdot I_z + (w_{,x} - \psi) \cdot \kappa \cdot GA = 0$ and solve for the coefficients \rightarrow

$$B_1 = -4A_1$$
, $B_3 = -2A_3 - \frac{24A_1 \cdot E_{0^{\circ}}I_z}{\kappa \cdot GA}$
 $B_2 = -3A_2$, $B_4 = -\frac{6A_2 \cdot E_{0^{\circ}}I_z}{\kappa \cdot GA} - A_4$

Use the boundary conditions and the second differential eq. to calculate $A_1 - A_5$:

$$w(x) = \frac{qx(L-x)}{2 \cdot \kappa \cdot GA} + \frac{qx(L-x)(L^2 + Lx - x^2)}{24 \cdot E_{0^{\circ}}I_z}$$

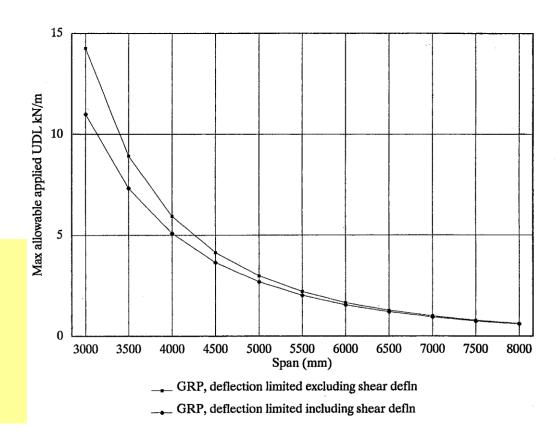
Deflection at midspan

$$w(L/2) = \frac{5 \cdot qL^4}{384 \cdot E_{0} \cdot I_z}$$

$$w(L/2) = \frac{5 \cdot qL^4}{384 \cdot E_{0} \cdot I_z} + \frac{q \cdot L^2}{8 \cdot \kappa \cdot GA}$$

• General expression for the total beam deflection as a sum of the deflection due to bending and shear: $w(x) = \frac{f_1(x)}{E_{0} \cdot I_z} + \frac{f_2(x)}{\kappa \cdot GA}$

Beam
$$f_1(w_{\rm max})$$
 $f_2(w_{\rm max})$ $x(w_{\rm max})$ Simply supported
Uniformly distr. load (q) $\frac{5 \cdot qL^4}{384}$ $\frac{qL^2}{8}$ $\frac{L}{2}$ Concentrated load (P) $\frac{PL^3}{48}$ $\frac{PL}{4}$ $\frac{L}{2}$ Cantilever beam
Uniformly distr. load (q) $\frac{qL^4}{8}$ $\frac{qL^2}{2}$ L Concentrated load (P) $\frac{PL^3}{3}$ PL L


Example: influence of the shear deformation

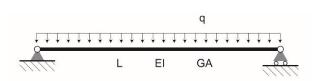
Profile: 300 x 150 mm l-beam

Load: uniformly distributed

General rule of thumb for slender Beams

for GFRP beams with span/depth > 25 shear deformation can be ignored

Bending Beam: Example


Choose an appropriate Profile for the following specifications

$$L = 3.0 \, \text{m}$$

$$q_{d,uls} = 13 \text{ kN/m}$$

$$q_{d,ser} = 10 \text{ kN/m}$$

$$w_{max}/L = 1/300 \rightarrow w_{max}=0.01 \text{ m}$$

Deflections and loading

$$w_{\text{max}} = \frac{5 \cdot q_{d,\text{ser}} L^4}{384 \cdot \text{E}_{0} \cdot \text{I}_z} + \frac{q_{d,\text{ser}} \cdot L^2}{8 \cdot \kappa \cdot \text{GA}} \qquad \sigma_{\text{max}} = \frac{q_{d,\text{uls}} L^2}{8} \cdot \frac{h}{2 \cdot \text{I}_z} \qquad \tau_{\text{max}} = \frac{q_{d,\text{uls}} L}{2} \cdot \frac{1}{\text{A}_{k,v}}$$

$$\sigma_{\text{max}} = \frac{q_{d,uls}L^2}{8} \cdot \frac{h}{2 \cdot I_z}$$

$$\tau_{\text{max}} = \frac{q_{d,uls}L}{2} \cdot \frac{1}{A_{k,y}}$$

Bending Beam: Example

2. Find a profile with sufficient bending stiffness (SLS).

Shear deformations are neglected in a first step:

$$E_{0} I_z \ge \frac{5 \cdot q_{d,ser} L^4}{384 \cdot w_{max}} = 1.054 \cdot 10^6 \text{ Nm}^2$$

 \rightarrow from specification table: choose I $_{240 \times 120 \times 12} \rightarrow E_{0} \circ I_z = 1.369 \cdot 10^6 \text{ Nm}^2$

3. Check the bending and shear stresses (ULS)

$$\sigma_{\text{max}} = \frac{q_{d,uls}L^2}{8} \cdot \frac{h}{2 \cdot L_z} = 35.8 \text{ MPa} \qquad \leq f_{b,0^{\circ},d} = 185 \text{ MPa} \qquad \text{(short term)}$$

$$\tau_{\text{max}} = \frac{q_{d,uls}L}{2} \cdot \frac{1}{A_{low}} = 7.1 \text{ MPa} \qquad \leq f_{\tau,d} = 20 \text{ MPa} \qquad \text{(short term)}$$

Do not forget to check also the long term!

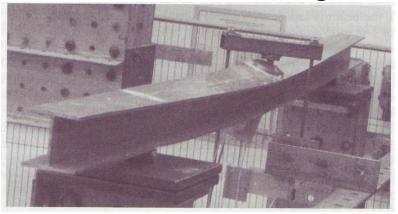
Bending Beam: Example

4. Check deflection (including shear deformation)

$$w_{\text{max}} = \frac{5 \cdot q_{d,ser} L^4}{384 \cdot E_{0^{\circ}} I_z} + \frac{q_{d,ser} \cdot L^2}{8 \cdot \kappa \cdot GA} = 9.3 \cdot 10^{-3} \text{m}$$

$$(7.7 \text{ mm}) \qquad (1.6 \text{ mm}) \qquad (\kappa = 0.42)$$

$$w_{\text{max}} = \frac{5 \cdot q_{d,ser} L^4}{384 \cdot E_{0^{\circ}} I_z} + \frac{q_{d,ser} \cdot L^2}{8 \cdot GA_{web}} = 9.1 \cdot 10^{-3} \text{m}$$


5. Remarks:

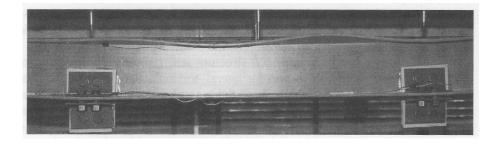
Simplification: use area oft the web (conventionally manufactured GFRP I and □-profiles)

- The design of GFRP-profiles is mostly driven by serviceability criteria.
- Start the design iteration procedure using the maximal deflection criterion.

Bending Beam: Stability problems

Lateral-torsional buckling

- Flange (compressive) displace laterally to the transverse load direction.
- Torsional stiffness is too low (especially for open section profiles)
- Theoretical calculations or design measures.
 - → see e.g. L.P. Kollár 2003, Mechanics of composite structures.


Example:

Compressive flanges are kept in place by connection to the bridge deck.

Bending Beam: Stability problems

Local buckling of walls due to in-plane compression

- Flange (compressive) displaces in the direction of the transverse load.
- Low bending stiffness perpendicular to the pultrusion direction.
- Weak fiber mats.

- Local buckling of walls due to in-plane shear
- Web crushing and web buckling in transverse direction

Axial Members

Axial Members: Tension

Ultimate limit state under axial tension Nd

$$\frac{\text{Nd}}{\text{A}} \leq \frac{f_{t,0^{\circ}}}{\gamma_m}$$

A can be either gross or net area

Serviceability limit state

$$\delta_x = \frac{\mathbf{N} \cdot \mathbf{L}}{\mathbf{E}_{0} \cdot \mathbf{A}}$$

Remark: The critical aspect of axial members in tension are neither the serviceability nor the ultimate limit state. Critical is the load transfer to the GFRP profile!

48

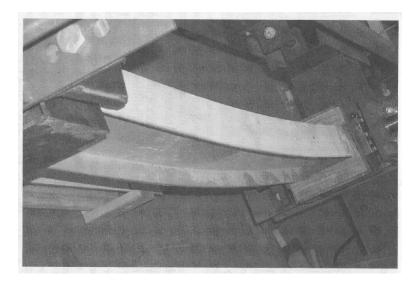
Axial Members: Compression

Ultimate limit state under axial compression Nd

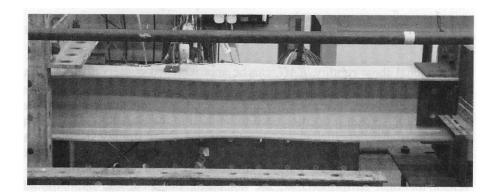
$$Nd \le \frac{F_c}{1 + \frac{F_c}{N_{Euler}}}$$

$$F_{C} = \frac{A \cdot f_{c,0}}{\gamma_{m}}$$

 $F_C = \frac{A \cdot f_{c,0^{\circ}}}{v_{...}}$... maximal compressive load


$$N_{\text{Euler}} = \frac{\pi^2 \cdot E_{0^{\circ}} \cdot I}{\gamma_{m,E} \cdot L_k^2}$$
 ... Euler load

 L_{k} ... Buckling length for columns


 $\gamma_{m,E}$... coefficient for Young's modulus = **1.3**

Axial Members: Compression

- The influence of shear deformation should be considered, but in the most cases, the influence will be small (less than 5%).
- Local buckling should be considered for short columns.
- For more information on the various buckling modes and effects → see L.P. Kollár 2003, Mechanics of composite structures

Global buckling

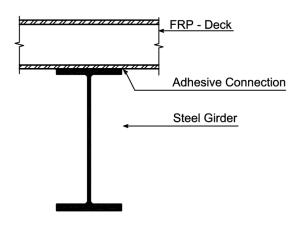
Local buckling

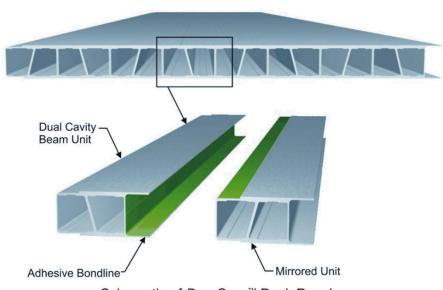
Connections

Joints in FRP composite structures

Eyecatcher Building: a mobile lightweight five-story GFRP building, Switzerland, 1998

Adhesively-bonded sections built up from pultruded profiles




Bolted joints

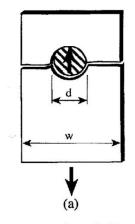
Joints in FRP composite structures

FRP bridge deck panels

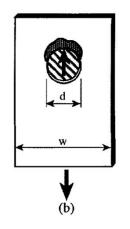
[Thesis Dr. Gürtler, CCLab 2004]

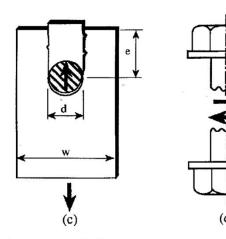
Schematic of *DuraSpan*[™] Deck Panel

Overview of the experimental set-up


Failure of adhesive bond

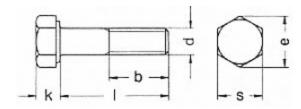
Connections: Bolted joints


- Bolts = Stress concentration in the profile and the bolt.
- It is necessary to ensure that the bolts and the profile can withstand this concentrated local stress compression.
- It is necessary to ensure that the region surrounding a group of bolts will not be torn out of the profile.
- Basic failure modes in bolted shear connections:


Prof. Keller, EPFL

bearing failure

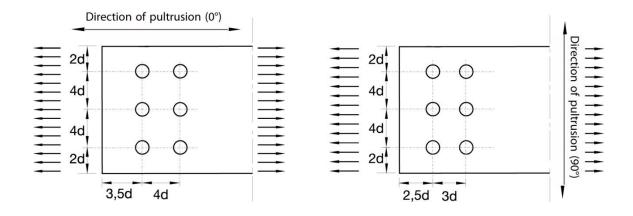
shear-out failure


bolt shear failure

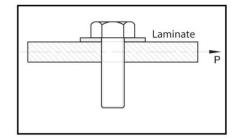
Connections: Bolted joints

The design procedure is comparable to the one for steel connections, but since there exist no standard GFRP material → each manufacturer has its own design rules for bolted joints.

IMPORTANT REMARKS:


- The direction of pultrusion and the direction of the force is RELEVANT!!! (anisotropic material)
- Use stainless or galvanised steel
- Do not cut threads in the composite material!
- Use screws with shafts

Calculation of load bearing capacity of bolts


- Shear in longitudinal direction (0°)
- Shear in transverse direction (90°)
- Tensile force

Minimum distances

Joint capacity tables, available for shear and tension

Pin-bearing strength (P) in kN for direction of force 0° (longitudinal direction of profile)																		
Bolt	Load- bearing capacity per cut (kN)		Thickness of laminate in mm															
	1 cut	2 cuts	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
M 6	2,7	5,4	3,5	4,2	4,8	5,5	6,2	6,9	7,6	8,3	9,0	9,7	10,4	11,1	11,8	12,5	13,2	13,8
M 8	4,8	9,5	4,6	5,5	6,5	7,4	8,3	9,2	10,2	11,1	12,0	12,9	13,8	14,8	15,7	16,6	17,5	18,5
M 10	7,4	14,9	5,8	6,9	8,1	9,2	10,4	11,5	12,7	13,8	15,0	16,2	17,3	18,5	19,6	20,8	21,9	23,1
M 12	10,7	21,4	6,9	8,3	9,7	11,1	12,5	13,8	15,2	16,6	18,0	19,4	20,8	22,2	23,5	24,9	26,3	27,7
M 14	14,6	29,2	8,1	9,7	11,3	12,9	14,5	16,2	17,8	19,4	21,0	22,6	24,2	25,8	27,5	29,1	30,7	32,3
M 16	19,0	38,1	9,2	11,1	12,9	14,8	16,6	18,5	20,3	22,2	24,0	25,8	27,7	29,5	31,4	33,2	35,1	36,9
M 20	30	59	11,5	13,8	16,2	18,5	20,8	23,1	25,4	27,7	30,0	32,3	34,6	36,9	39,2	41,5	43,8	46,2
M 22	36	72	12,7	15,2	17,8	20,3	22,8	25,4	27,9	30,5	33,0	35,5	38,1	40,6	43,2	45,7	48,2	50,8
M 24	43	86	13,8	16,6	19,4	22,2	24,9	27,7	30,5	33,2	36,0	38,8	41,5	44,3	47,1	49,8	52,6	55,4
M 27	54	109	15,6	18,7	21,8	24,9	28,0	31,2	34,3	37,4	40,5	43,6	46,7	49,8	53,0	56,1	59,2	62,3
M 30	67	134	17,3	20,8	24,2	27,7	31,2	34,6	38,1	41,5	45,0	48,5	51,9	55,4	58,8	62,3	65,8	69,2
M 36	96	193	20,8	24,9	29,1	33,2	37,4	41,5	45,7	49,8	54,0	58,2	62,3	66,5	70,6	74,8	78,9	83,1
M 42	131	262	24,2	29,1	33,9	38,8	43,6	48,5	53,3	58,2	63,0	67,8	72,7	77,5	82,4	87,2	92,1	96,9
M 48	171	343	27,7	33,2	38,8	44,3	49,8	55,4	60,9	66,5	72,0	77,5	83,1	88,6	94,2	99,7	105,2	110,8

Design value of ultimate limit state Safety class: normal

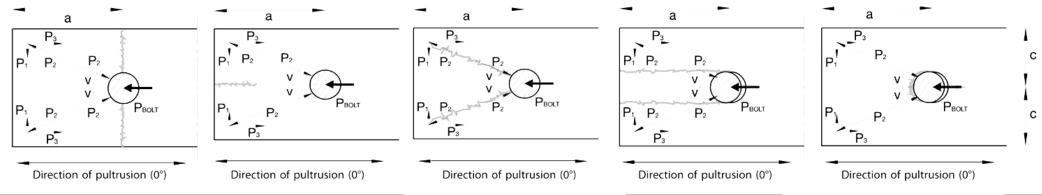
Bolt quality: A4

Washers under head and nut: $D = D_{bolt} \cdot 2$

Hole drilled in profile for bolt: $D = D_{bolt} + 1$ mm

Shear in longitudinal direction 0°

$$P_{B,d} = \frac{d \cdot t \cdot 150 \text{ MPa}}{\gamma_m (=1.3)}$$


Shear in transverse direction 90°

$$P_{B,d} = \frac{d \cdot t \cdot 70 \text{ MPa}}{\gamma_{\text{m}} (=1.3)}$$

Bolted connection in shear: e.g. shear in longitudinal direction

Direction of pultrusion (0°) Direction of pultrusion (0°) Simplified model The values are based on c/2-d/4 c/2-d/4 $a = 3.5 \cdot d$ 240 MPa c/2-d/4 $b = 1.0 \cdot d$ 240 MPa $c = 2.0 \cdot d$ 50 MPa c/2-d/4 70 MPa c/2-d/4 25 MPa b/2 b/2 b/2

Investigated failure modes

$$g_m \cdot P_{Bolt} \le d \cdot t \cdot 720 \text{ MPa} \qquad g_m \cdot P_{Bolt} \le d \cdot t \cdot 240 \text{ MPa} \qquad g_m \cdot P_{Bolt} \le d \cdot t \cdot 240 \text{ MPa}$$

$$g_m \cdot P_{Bolt} \le d \cdot t \cdot 240 \text{ MPa} \qquad g_m \cdot P_{Bolt} \le d \cdot t \cdot 150 \text{ MPa}$$

- Bolted connections in tension
- Static conditions
 - Bolt: Tearing of bolt in threaded cross-section

$$P_d \leq \frac{A_s \cdot f_{yk}}{\gamma_m}$$

Laminate: Shear fracture at rim of washer

$P_d \leq \frac{2 \cdot a \cdot \pi \cdot t \cdot J_{\tau}}{\gamma_m}$

Geometry and strength:

d ... Diameter of the bolt

A_s ... Stress area of the bolt

t ... Thickness of laminate

2d ... Diameter of washer

f_{vk} ... Tensile strength of bolt

f_r ... Shear strength of laminate

Connections: Bonded joints

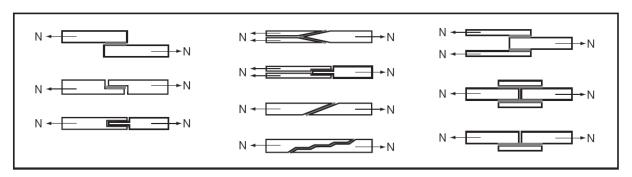
Using an adhesive agent for joining profiles can have advantages:

- Easy to use / easy to make aesthetic joints
- Typically more rigid than bolted joints
- Glued joints subjected to dynamic loads are good

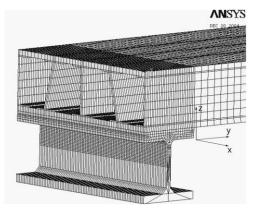
But be careful ...

- Adhesive agents have properties that depend on time, temperature, humidity ...
- Failure in glued joints takes place suddenly (brittle behaviour)
- The load-bearing capacity is not proportional to the area which is glued

The design of bonded joints may be based on:


- Analytical models for plate-to-plate connections (see Eurocomp 1996 Design Code)
- Design guidelines supplemented by testing
- Finite element analysis

Connections: Bonded joints


- A bonded joint has the following three primary failure modes:
 - adhesive failure
 - cohesive failure of adhesive
 - cohesive failure of adherend
- The design of any bonded joint shall satisfy the following conditions:
 - allowable shear stress in the adhesive is not exceeded.
 - allowable tensile (peel) stress in the adhesive is not exceeded.
 - allowable through-thickness tensile stress of the adhesive is not exceeded.
 - allowable in-plane shear stress of the adherend should not be exceeded.
- The calculation of the stresses has to be done very carefully! Often calculations are supplemented by testing.

Connections: Bonded joints

Different types of bonded joint configurations

Research on bonded joints for structural applications

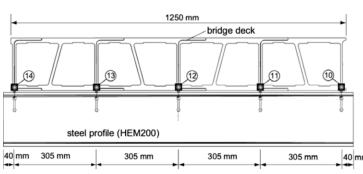
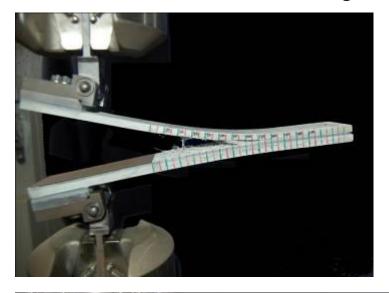
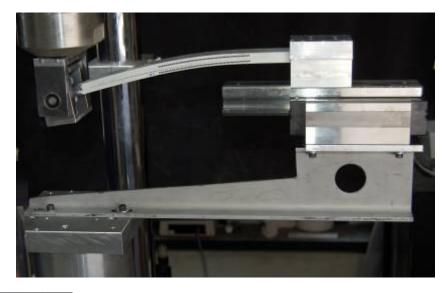




Fig. 17. Failure sequence of double lap joint (DN 100.2/5), frame intervals 1/2000 s.

Connections: Bonded joints, fracture modes

Displacement control, 1 mm/min, 5 Hz Ambient conditions

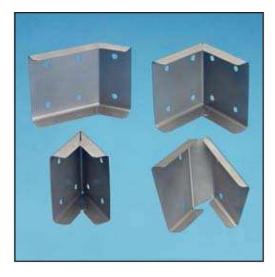
Shahverdi, M., "Mixed-mode static and fatigue failure criteria for adhesively-bonded FRP joints". PhD Thesis, EPFL, Switzerland, 2013.

Connections: Introduction

Table 5.2 Typical features of different connections between FRP members. ... from Eurocomp 1996 Design Manual (supplemented)

	Med	chanical co	nnections				
	Advantages		Disadvantages				
•	Requires no special surface preparation be disassembled Ease of inspection Quasi ductile behaviour		 Low strength to stress concentrations Special practices required in assembly; results in time consuming assembly Fluid and weather tightness normally requires special gaskets or sealants Corrosion of metallic fasteners 				
	В	onded conr	nections				
	Advantages			Disadvantages			
	High joint strength can be achieved Low part count Fluid and weather tightness Potential corrosion problems are minimized Smooth external surfaces	ed •	 Requires special surface preparation Difficulty of inspection 				
•	Stiffness	mbined cor	nections				
	Advantages			Disadvantages			
•	Bolts provide support and pressur during assembly and curing Growth of bondline defects is hind by bolts		Structurally bolts act as backup elements - in an intact joint, bolts carry no load				

Connections: Introduction


Table 5.1 Characteristics of different joint categories. (from Eurocomp Design Code 1996)

	Mechanical	Bonded	Combined
Stress concentration at joint Strength/weight ratio Seal (water tightness) Thermal insulation Electrical insulation Aesthetics (smooth joints) Fatigue endurance	high	medium	medium
	low	medium	medium
	no	yes	yes
	no	yes	no
	no	yes	no
	bad	good	bad
	bad	good	good
Sensitive to peel loading Disassembly Inspection Heat or pressure required Tooling costs Time to develop full strength	no	yes	no
	possible	impossible	impossible
	easy	difficult	difficult
	no	yes/no ¹	yes/no ¹
	low	high	low
	immediate	long	long

¹ no if cold curing two-part adhesives are used in an appropriate environment

Connections: Other joints

Brackets for assembly (Fiberline)

Brackets for efficient assembly of profile structures.

Example of joint with a Fiberline bracket. EP patent No. 0819200

Custom pultruded connections

GFRP: Some final remarks

- Perpendicular to the direction of pultrusion, the material is WEAK and SOFT!
 → avoid such loadings if possible
- In order to use pultruded GFRP-profiles economically, the design must be done in a clever way!
 - e.g.: for bridges, the railings should be used as part of the load-bearing structure
- GFRP structures are very light → vibration problems may occur
- Where large stiffness is needed (where static height and deflections must remain very small) → GFRP does not always lead to lighter structures than with steel.

Thank you for attention

any question?

