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Introduction
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Introduction: Pro’s and con’s

▪ Pro’s

▪ High specific strength:

▪ Good in-plane mechanical properties

▪ High fatigue and environmental resistance

▪ Adjustable mechanical properties

▪ Lightweight-> ease of handling, small additional load…

▪ Quick assembly / erection

▪ Low maintenance

▪ Highly cost-effective (2-10 €/kg)

max
maxl

g




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

Material CFRP GFRP Steel S500

138.4 km  27.8 km  6.4 km



Design of FRP-Profiles and All-FRP-Structures, 15.10.25 Fiber Composites, FS25 Prof. Dr. M. Shahverdi 5

Introduction: Pro’s and con’s

▪ Con’s

▪ Brittle

▪ High initial costs

▪ Low to moderate application temperature (-20 up to 80 °C)

▪ Low fire resistance (sometimes with unhealthy gases)
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Introduction: Common profiles

▪ Structural profiles

▪ Most structural profiles produced in conventional profile shapes similar to 

metallic materials

▪ Similarity in geom. and properties, however no standard geom., 

mechanical and physical properties used by all manufacturers

Structural profiles Non-structural profiles
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Introduction: Examples

▪ Footbridges

Fiberline Bridge in Kolding, DK

1997
The bridge was installed during 18 hours over 3 

nights

Span: 40 m

Cost: 0.5 mio CHF

Only Fiberline standard profiles used

http://fiberline.com/fiberline-bridge-kolding

Pontresina bridge, Switzerland

1997

Span: 2 x 12.5 m

Weight: 3.3 tons  (installation by helicopter)

http://fiberline.com/pontresina-bridge-switzerland

http://fiberline.com/pontresina-bridge-switzerland
http://fiberline.com/pontresina-bridge-switzerland
http://fiberline.com/pontresina-bridge-switzerland
http://fiberline.com/pontresina-bridge-switzerland
http://fiberline.com/pontresina-bridge-switzerland
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Introduction: Examples

▪ Footbridges
Composite pedestrian bridge in Lleida, Spain

Span: 38 m

Width: 3.0 m

http://fiberline.com/international-award-innovative-grp-footbridge

“GRP does not conduct electricity, 

which is also very important as it 

means there is no magnetic 

interference with the electrified 

railway,” continues Mr. Sobrino.

http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
http://fiberline.com/international-award-innovative-grp-footbridge
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Introduction: Examples (Avançon Bridge, Switzerland, 2012)

▪ Road bridges

Cross section of new two-lane bridge (dimensions in [mm])

Longitudinal section of new bridge (dimensions in mm) [Prof. Keller]

Bridge details

Location: Bex, Suisse

Installed on: 12th October, 2012

Dimensions: 12m x 7m (9 tons)
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Introduction: Examples

▪ Bridgedeck (Footbridges)

Würenlos, Switzerland Loopersteg, Switzerland
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Introduction: Examples

▪ Buildings

Eyecatcher Building, Basel, Switzerland

1998

Height: 15 m

Storeys: 5

http://www.fiberline.com/gb/casestories/case1835.asp

Project: Maagtechnic
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Introduction: Examples

▪ Laboratory bridge

Empa Laboratory Bridge, Switzerland

Span: 19 m

Width: 1.6 m

Load capacity: 15 tons
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Introduction: Examples

▪ Noise barrier SBB

Göschenen, Switzerland

Project: Maagtechnic
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Introduction: Examples

▪ Balconies

Switzerland

Project: Maagtechnic
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Introduction: Examples

bogie

Hou, J. and G. Jeronimidis, A novel bogie design made of glass fibre reinforced plastic. Materials & Design, 2012. 37: p. 1-7.
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Introduction: Examples

bogie

Primary suspension inner and outer coil springs

Secondary suspension

(side bearers)
Standard Y25 Bogie

o Metallic coil spring are replaced by FRP leaf springs, i.e. suspension system is integrated to the FRP frame

Hybrid GFRP bogie
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Introduction: Application

▪ Applications where  GFRP structures are competitive:

▪ Significant corrosion and chemical resistance is required
(Food and chemical processing plants, cooling towers, offshore platforms …)

▪ Electromagnetic transparency or electrical insulation is required.

▪ Light-weight is cost essential
(fast deployment …)

▪ Prestige and demonstration objects 
(e.g. Novartis Campus Entrance Building)

Photo: Prof. Th. Keller, EPFL
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Material
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▪ Only pultruded GFRP profiles will be considered in this lecture

▪ Production of profiles with constant cross-section along the length

▪ High quality

▪ Continuous longitudinal fiber bundles and filament mats

Pultrusion line

Material: Pultrusion process
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Pultrusion process

Take from [https://www.youtube.com/watch?v=aXq1hrzne2k]



Design of FRP-Profiles and All-FRP-Structures, 15.10.25 Fiber Composites, FS25 Prof. Dr. M. Shahverdi 21

Material: Components

▪ Pultruded profiles contain three primary components:

▪ Reinforcement

▪ Matrix

▪ Supplementary

constituents

polyester

epoxy

phenol

polymerisation agents

fillers

additives
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Material: Shapes of pultruded profiles

▪ Available Profiles on Stock:

Length up to 12 m (for transportation reasons)!

▪ Special cross-sections can be designed and ordered

(several kilometres are necessary → special tools have to be designed)
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Material: Durability

▪ Various environmental and load conditions that affect durability of 

(G)FRPs in terms of strength, stiffness, fiber/matrix interface integrity, 

cracking:

▪ water/sea water

▪ chemical solutions

▪ prolonged freezing

▪ thermal cycling (freeze-thaw)

▪ elevated temperature exposure

▪ UV radiation

▪ creep and relaxation

▪ fatigue

▪ fire…
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Design Concept
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Design Concept: Basic Assumptions 

▪ Definitions and directions

90° → perpendicular

0° → parallel to pultrusion direction
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Design Concept

▪ Codes

▪ Every manufacturer has its own profile design → No European Design 

Code is available! (only EN13706, about testing and notation)

▪ There exists European guidelines: EUROCOMP 1996 Design Code

EUROCOMP 1996 Handbook

▪ Fiberline Design  Manual is based on Eurocomp 1996. 

▪ Design concept (according to Eurocodes and Swisscodes)

▪ Partial safety factors

▪Measured material parameters

▪ Rules for bolted connections
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Design Concept

k
d m
=

R
R
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Coefficient Description Max. Min. Fiberline

Derivation of mat. properties 2.25 1.15 1.15

Degree of postcuring 1.6 1.1 1.1

Production process 2.0 1.0 1.0

Operating temperature

Design Concept

▪ Partial safety factor m m,1 m,2 m,3 m,4
    =   

m,1


m,2


m,3


m,4


m m

Operating 

temperature °C
Short-term load Long-term load

-20 ...  +60 1.0 2.5

80 1.25 3.13

m,4

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Design Concept: Basic Assumptions 

▪ Material Properties, stength values (Fiberline Profiles)
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Design Concept

▪ Serviceability limit states

Ed ≤ Cd

Ed … the crucial action effect due to the load cases considered in

the investigated dimensioning situation. Typically maximal

deflection response of the structure. 

Cd … corresponding serviceability limit. SIA 261
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Design Concept: Basic Assumptions

▪ Typical data sheet of a profile (Fiberline I-Profile)
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Bending Beam
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Bending Beam: Design of …

▪ Calculate bending moments Md and shear forces Qd acting on the profile, 

using the appropriate load factors (SIA 260 / 261)

▪ Ultimate limit state

▪ Bending:

▪ Shear:

Ak … relevant shear area

d, ,max d, ,max ,0
max

M M

W W
y z b

mzy

f
 

 
 
 
 
 
 

= + 

d, ,max
max

k,y
A
y

m

Q f = 
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Bending Beam: Design of …

▪ Serviceability limit state

▪ Deflection limit:

… typically selected between 200 and 400

given by SIA 261 or the building owner

… calculated including shear deformations

▪ Vibrations

Light-weighted and ‘soft’ structures are susceptible to vibrations (traffic, wind, 

the movement of people …)!!

max 1w
L 



maxw
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Bending Beam: Timoshenko Theory

▪ Pultruded profiles have a low shear modulus → shear deformation 

must be taken into account!

▪ Several bending theories have been published for beams: 

▪ Euler-Bernoulli theory (1702) 

▪ Timoshenko theory (1968)

▪ Higher order beam theory

▪ A simply supported beam with a symmetric cross-section is discussed
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Bending Beam: Timoshenko Theory

Cross-sections plane

and perpendicular

1 degree of freedom

w

Cross-sections plane but

NOT perpendicular

2 degrees of freedom

w and ψ

Cross-sections do NOT

remain plane

3+ degrees of freedom

w, ψ and …
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Bending Beam: Euler vs. Timoshenko Theory

Kinematic relationships

( ),

( )

( ),

2 0
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y

x
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u w x
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y w x

x
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y x


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
= =− 



= + =
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=− 

=


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 

Hook’s law

0°
E   and  G 2x x xy xy   =  = 

z0°
, E Iz x xx

QS

M y dydz w= −   =  

( )

z0°
, E I

,

z x x
QS

y x
QS

M y dydz

Q dydz w GA

 

   

= −   = 

=  = −  




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Bending Beam: Euler vs. Timoshenko Theory

Equilibrium

Solution for the simply supported beam (distributed load)

In a first approximation, the 

deflections are calculated by direct 

integration of:

z0°

( ),
E Ixx
M xw =



( )
( )z0°

,( ) , ,

, E I , 0,

x

x

xx x

xx x

q x w GA

w GA

Q

M Q

 

  

− −  

 + −  

=− =

= =−

Equilibrium on an infinitesimal 

beam element:

Coupled second order differential equation

21 1
( )   ,  (0) 0  and  ( ) 0

2 2
M x qLx qx w w L= − = =

( )3 2 3

0° z

( ) 2
24 E I

qx
w x L Lx x=  − +

 

2

0° z

1 1 1
,

E I 2 2
xxw qLx qx

 
= − 

  

(0) 0  and  ( ) 0

(0) 0 , (0) 0  and  ( ) 0 , ( ) 0 x x

w w L

M M L L 

= =

= → = = → =

Functions:
4 3 2

1 2 3 4 5

3 2

1 2 3 4

( )

( )

w x A x A x A x A x A

x B x B x B x B

= + + + +

= + + +
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Put in and 

solve for the coefficients →

Bending Beam: Euler vs. Timoshenko Theory

Use the boundary conditions and 

the second differential eq. to 

calculate A1 – A5:

( )0° z, E I , 0xx xw GA   + −   =

1 0
1 1 3 3

2 0
2 2 4 4

24 E I
4    ,   2

GA

6 E I
3    ,   

GA

z

z

A
B A B A

A
B A B A










= − = − −




= − = − −



( ) ( )( )2 2

0

( )
2 GA 24 E Iz

qx L x L Lx xqx L x
w x

 

− + −−
= +

  

Deflection at midspan

4

0

5
2 384 E Iz

qLLw 
 
 



=


4 2

0

5
2 384 E I 8 GAz

qL q LLw


 
+ 

 


 =
  
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▪ General expression for the total beam deflection as a sum of the deflection 

due to bending and shear:

GA

xf

IE

xf
xw

z 
+=

 

)()(
)( 2

0

1

Beam

Simply supported

Uniformly distr. load (q)

Concentrated load (P)

Cantilever beam

Uniformly distr. load (q)

Concentrated load (P)

)( max1 wf

384

5 4qL

48

3PL

8

4qL

3

3PL

2 max( )f w

8

2qL

4

PL

2

2qL

PL

)( maxwx

2

L

2

L

L

L

Bending Beam: Euler vs. Timoshenko Theory
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Bending Beam: Euler vs. Timoshenko Theory

▪ Example: influence of the shear deformation

Profile: 300 x 150 mm I-beam

Load: uniformly distributed

General rule of thumb for slender 

Beams:

for GFRP beams with span/depth > 25

shear deformation can be ignored
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Bending Beam: Example

▪ Choose an appropriate Profile for the following specifications

1. Deflections and loading

L = 3.0 m

qd,uls = 13 kN/m

qd,ser = 10 kN/m

wmax/L = 1/300 → wmax=0.01 m

max

4 2
, ,

0

5

384 E I 8 GA
d ser d ser

z

q L q L
w


+



 
=

  

2
,

max
z8 2 I

d uls
q L h =



,
max

k,y

1
2 A
d uls
q L

 =
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Bending Beam: Example

2. Find a profile with sufficient bending stiffness (SLS).

Shear deformations are neglected in a first step:

→ from specification table: choose  I 240x120x12 →  

3. Check the bending and shear stresses (ULS)

6 2

4
,

0
max

1.054 10  Nm
5

E I
384

d ser
z

q L

w
= 






6 2
0

1.369 10  NmE Iz = 

2
,

max
z

35.8 MPa
8 2 I

d uls
q L h = =



,
max

k,y

1 7.1 MPa
2 A
d uls
q L

 = =

,0 ,
185 MPa

b d
f


 =

,
20 MPa

d
f


 =

Do not forget to check also the long term!

(short term)

(short term)
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Bending Beam: Example

m103.9
8384

5
3

2

,

0

4

,

max

−



=



+




=

GA

Lq

IE

Lq
w

serd

z

serd



4. Check deflection (including shear deformation)

5. Remarks:

▪ The design of GFRP-profiles is mostly driven by serviceability criteria.

▪ Start the design iteration procedure using the maximal deflection criterion.

max 0.01 mw =

m101.9
8384

5
3

2

,

0

4

,

max

−



=



+




=

web

serd

z

serd

GA

Lq

IE

Lq
w

(7.7 mm) (1.6 mm) (κ=0.42)

Simplification: use area oft the web (conventionally manufactured 

GFRP I and    -profiles) 
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Bending Beam: Stability problems

▪ Lateral-torsional buckling
▪ Flange (compressive) displace laterally to the 

transverse load direction.

▪ Torsional stiffness is too low (especially for 

open section profiles)

▪ Theoretical calculations or design measures.

→ see e.g. L.P. Kollár 2003, 

Mechanics of composite structures.

▪ Example:

Compressive flanges are kept in 

place by connection to the bridge 

deck.
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Bending Beam: Stability problems

▪ Flange (compressive) displaces in the 

direction of the transverse load.

▪ Low bending stiffness perpendicular to the 

pultrusion direction.

▪ Weak fiber mats.

▪ Local buckling of walls due to in-plane compression

▪ Local buckling of walls due to in-plane shear

▪ Web crushing and web buckling in transverse direction
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Axial Members
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Axial Members: Tension

▪ Ultimate limit state under axial tension Nd

▪ Serviceability limit state

▪ Remark: The critical aspect of axial members in tension are neither the serviceability 

nor the ultimate limit state. Critical is the load transfer to the GFRP profile!

,0Nd
A

t

m

f




0°

N L
E Ax

=


A   can be either gross or net area

A  = gross area



Design of FRP-Profiles and All-FRP-Structures, 15.10.25 Fiber Composites, FS25 Prof. Dr. M. Shahverdi 49

Axial Members: Compression

▪ Ultimate limit state under axial compression Nd

… maximal compressive load

… Euler load

… Buckling length for columns

… coefficient for Young’s modulus = 1.3

c

c

Euler

F
Nd

F
1

N


+

c,0°
C

A f
F

m


=

2
0

Euler 2
,

N
m E k

E I

L






 
=



k
L

,m E

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Axial Members: Compression

▪ The influence of shear deformation should be considered, but in the most 

cases, the influence will be small (less than 5%).

▪ Local buckling should be considered for short columns.

▪ For more information on the various buckling modes and effects 

→ see L.P. Kollár 2003, Mechanics of composite structures

Global buckling Local buckling
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Connections
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Eyecatcher Building: a mobile lightweight five-story GFRP building, Switzerland, 1998

Adhesively-bonded sections built up 

from pultruded profiles

Three GFRP frames composed of

adhesively-bonded built-up sections as

the main load-bearing structure

Joints in FRP composite structures 

Bolted joints
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FRP bridge deck panels
[Thesis Dr. Gürtler, CCLab 2004]

Overview of the experimental set-up Failure of adhesive bond

Joints in FRP composite structures 
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Connections: Bolted joints

▪ Bolts = Stress concentration in the profile and the bolt.

▪ It is necessary to ensure that the bolts and the profile

can withstand this concentrated local stress compression.

▪ It is necessary to ensure that the region surrounding

a group of bolts will not be torn out of the profile.

▪ Basic failure modes

in bolted shear

connections:

bolt shear failure
Prof. Keller, EPFL
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Connections: Bolted joints

▪ The design procedure is comparable to the one for steel connections, but 

since there exist no standard GFRP material → each manufacturer has its 

own design rules for bolted joints.

▪ IMPORTANT REMARKS:

▪ The direction of pultrusion and the direction of the force is RELEVANT!!!

(anisotropic material)

▪ Use stainless or galvanised steel

▪ Do not cut threads in the composite material!

▪ Use screws with shafts
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▪ Calculation of load bearing capacity of bolts

▪ Shear in longitudinal direction (0°)

▪ Shear in transverse direction (90°)

▪ Tensile force

▪ Minimum distances

Connections: Bolted joints (Fiberline recommendations)
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▪ Joint capacity tables, available for shear and tension

,
m

150 MPa
( 1.3)B d

d tP

 =

=

Shear in longitudinal direction 0°

,
m

70 MPa
( 1.3)B d

d tP

 =

=

Shear in transverse direction 90°

Connections: Bolted joints (Fiberline recommendations)
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▪ Bolted connection in shear: e.g. shear in longitudinal direction

Connections: Bolted joints (Fiberline recommendations)

gm·PBolt ≤ d·t·720 MPa
gm·PBolt ≤ d·t·240 MPa

gm·PBolt ≤ d·t·240 MPa gm·PBolt ≤ d·t·240 MPa

gm·PBolt ≤ d·t·150 MPa
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▪ Bolted connections in tension

▪ Static conditions

▪ Bolt: Tearing of bolt in threaded cross-section

▪ Laminate: Shear fracture at rim of washer

▪ Geometry and strength:

d ... Diameter of the bolt

As ... Stress area of the bolt

t ... Thickness of laminate

2d ... Diameter of washer

fyk … Tensile strength of bolt 

f … Shear strength of laminate

s yk
d m

A f
P 




2
d m

d t f
P 


   



Connections: Bolted joints (Fiberline recommendations)
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Connections: Bonded joints

▪ Using an adhesive agent for joining profiles can have advantages:

▪ Easy to use / easy to make aesthetic joints

▪ Typically more rigid than bolted joints

▪ Glued joints subjected to dynamic loads are good

▪ But be careful … 

▪ Adhesive agents have properties that depend on time, temperature, humidity …

▪ Failure in glued joints takes place suddenly (brittle behaviour)

▪ The load-bearing capacity is not proportional to the area which is glued

▪ The design of bonded joints may be based on:

▪ Analytical models for plate-to-plate connections (see Eurocomp 1996 Design Code)

▪ Design guidelines supplemented by testing

▪ Finite element analysis
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Connections: Bonded joints

▪ A bonded joint has the following three primary failure modes:

▪ adhesive failure

▪ cohesive failure of adhesive

▪ cohesive failure of adherend

▪ The design of any bonded joint shall satisfy the following conditions:

▪ allowable shear stress in the adhesive is not exceeded.

▪ allowable tensile (peel) stress in the adhesive is not exceeded.

▪ allowable through-thickness tensile stress of the adhesive is not exceeded.

▪ allowable in-plane shear stress of the adherend should not be exceeded.

▪ The calculation of the stresses has to be done very carefully! Often 

calculations are supplemented by testing. 
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Connections: Bonded joints

▪ Different types of bonded joint configurations

▪ Research on bonded joints for structural

applications
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Connections: Bonded joints, fracture modes

Displacement control, 

1 mm/min, 5 Hz

Ambient  conditions

Shahverdi, M., “Mixed-mode static and fatigue failure criteria for 

adhesively-bonded FRP joints”. PhD Thesis, EPFL, Switzerland, 2013.
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Connections: Introduction
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Connections: Introduction

(from Eurocomp Design Code 1996)
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Connections: Other joints

▪ Brackets for assembly (Fiberline)

▪ Custom pultruded connections
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GFRP: Some final remarks

▪ Perpendicular to the direction of pultrusion, the material is WEAK and SOFT!

→ avoid such loadings if possible

▪ In order to use pultruded GFRP-profiles economically, the design must be done 

in a clever way! 

e.g.: for bridges, the railings should be used as part of the load-bearing structure

▪ GFRP structures are very light → vibration problems may occur

▪ Where large stiffness is needed (where static height and deflections must 

remain very small) → GFRP does not always lead to lighter structures than with 

steel. 
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Thank you for attention

any question?
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