Table of content:

- ✓ Introduction
- ✓ Materials and Properties of Polymer Matrix Composites
- Mechanics of a Lamina
- ✓ Laminate Theory
- ✓ Ply by Ply Failure Analysis
- Externally Bonded FRP Reinforcement for RC Structures: Overview
- Flexural Strengthening
- Strengthening in Shear
- Column Confinement
- CFRP Strengthening of Metallic Structures
- FRP Strengthening of Timber Structures
- Design of FRP Profiles and all FRP Structures
- An Introduction to FRP Reinforced Concrete
- Structural Monitoring with Wireless Sensor Networks
- Composite Manufacturing
- Testing Methods

Externally bonded FRP reinforcement for RC structures: post strengthening

Book Composite for Construction, L. C. Bank, Chapter 8

Reasons for strengthening

- Deterioration due to ageing
- Crashing of vehicles into bridge components
- Degradation such as corrosion of steel reinforcement
- Poor initial design and/or construction
- Lack of maintenance
- Accidental events such as earthquakes
- Increase in service loads
- Change to the structural system
- Large crack widths
- Large deformations

Advantages of FRP as compared with steel

- Low weight and therefore easier application
- Unlimited availability in FRP sizes
- Very flexible during installation
- High strength (although this strength cannot be exploited in unstressed applications)
- Good fatigue resistance
- Immunity to corrosion
- → Life cycle cost can be competitive to steel

Disadvantages

- Performance under elevated temperatures
- Effect of UV radiation
- Application of FRP and adhesives need qualified personnel
- Adhesives are dangerous for people and environment
- Material behaviour: linear elastic to failure

Strengthening materials are available mainly in following forms:

- UD-Strips (thickness appr. 1 mm) made by pultrusion,
- Flexible sheets or fabrics (in one or two directions) and sometimes preimpregnated with resin.

FRP Strengthening may replace:

- Steel plate strengthening,
- Concrete cast in-place or shotcrete jackets around existing elements,
- Steel jackets.

FRP-Strengthening Applications

Type	Application	Fibre Dir.	Schematic
Flexural	Tension and/or side face of beam	Along long. axis of beam	Section
Shear	Side face of beam (u-wrap)	Perpendicular to long. axis of beam	Section
Confinement	Around column	Circumferential	Section

Typical FRP applications as strengthening material:

- Flexural strengthening of slab (strips, sheets),
- Flexural strengthening of beam (strips, sheets, fabrics),
- Shear strengthening of beam (angles, sheets, fabrics),
- Shear strengthening and confinement of column (sheets, fabrics, shells),
- Wrapping of concrete tank (sheets, fabrics),
- Shear strengthening of beam-column joint (strips, sheets, fabrics).

FRP Materials

• Wet lay-up

Installation Techniques

Used with flexible sheets

Saturate sheets with epoxy adhesive

Place on concrete surface

Resin acts as adhesive

AND matrix

FRP Materials

Installation Techniques

2 Pre-cured

Used with rigid, pre-cured strips

Apply adhesive to strip backing

Place on concrete surface

Not as flexible for variable structural shapes

Resin acts as adhesive

Post Strengthening using Steel Strips

- Heavy
- Corrosion

- Requires scaffold
- Requires many joints

Post Strengthening using CFRP Strips

Introduced by Prof. Urs Meier (EMPA Switzerland) in 80's

- Light weight
- Corrosion resistant

- No scaffold
- No joints

CFRP Laminates (UD-Strips) for Post-Strengthening

Ibach Bridge, Switzerland 1991

Ibach Beridge, Switzerland 1991

Externally Bonded FRP: Overview

Fibre Composites, FS24

Flexural strengthening of RC structures

Strengthening of a concrete deck using CFRP strips on the top and underside of the deck

Flexural strengthening using CFRP strips of concrete girders in a Cement manufacturing building in Poland

Daily Job

Shear strengthening of RC structures

Installation of prefabricated CFRP L-shaped plates (shear strengthening) over existing CFRP strips (flexural strengthening)

Shear Strenghtening of Reinforced Concrete Structures Using CFRP-Laminates

Placing of CFRP fabrics for shear strengthening of DK 81 bridge above railway to Laziska power plant in Poland

Externally Bonded FRP: Overview

OBJECTIVES

INCREASE EFFICIENCY OF STRENGTHENING BY APPLYING NEAR SURFACE MOUNTED REINFORCEMENT (NSMR)

$$\varepsilon_{\rm f} = 6 \div 7\%$$

 $\varepsilon_{\rm f} = ?$

EXTERNAL BONDING

NSMR CFRP BONDING

Near Surface Mounting Reinforcement (NSMR)

Flexural strengthening of a concrete deck in the region of negative bending moment using Near Surface Mounting Reinforcement (NSMR) technique by cutting a slot in the concrete deck and placing the CFRP into the slots; industry plant, Stuttgart, Germany

Seismic retrofitting

Application of CFRP fabrics to concrete columns for seismic retrofitting of Reggio Emilia football stadium, Italy

anchorages

Cooling Towers

Swiss Code SIA 166 (2004)

fib CEP-FIB, Bulletin 90, Externally applied FRP reinforcement for concrete structures, Technical Report, Task group 5.1, May 2019

ACI 440.2R-02

Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures

Reported by ACI Committee 440

Basis of design and safety concept

- Determination of the state of the (repaired) structure prior to strengthening:
 - Field inspection
 - Reviewing existing documents
 - Structural analysis
- Identification of deficiencies and a proper repair concept
- Verification of Ultimate Limit State (ULS)
- Verification of Serviceability Limit State (SLS)

Evaluation of Existing Structures

• Evaluation is important to (e.g. SIA 162/5 "Erhaltung von Betontragwerken"):

Determine concrete condition

Identify the cause of the deficiency

Establish the current load capacity

Evaluate the feasibility of FRP strengthening

Evaluation of Existing Structures

Evaluation should include:

Actual size of elements

Actual material properties

Location, size and cause of cracks, spalling

Location, extent of corrosion

Quantity, location of rebar

Evaluation of Existing Structures

 One of the key aspects of strengthening:
 State of concrete substrate

 Concrete must transfer load from the elements to the FRPs through shear in the adhesive

Surface modification required where surface flaws exist

Basis of design and safety concept

- Accidental situation such as loss of FRP due to impact, vandalism or fire: assuming unstrengthened member with materials safety factors equal to 1.0 at ULS,
- Special design considerations: impact resistance, fire resistance, cyclic loading, extra bond stresses due to the difference in thermal expansion coeff between FRP and concrete,

Basis of design and safety concept

- Design should be such that brittle failure modes, such as shear and torsion are excluded.
- It should be guaranteed that:

the internal steel is sufficiently yielding in ULS, so that the strengthened member will fail in a ductile manner, despite the brittle nature of concrete crushing, FRP rupture or bond failure.

The design strength of the concrete:

$$\alpha.f_{cd} = \frac{\alpha.f_{ck}}{\gamma_c}$$

Where:

f_{ck}: characteristic value of the compressive strength.

 α : reduce compressive strength under long term loading (=0.85).

 γ_c : partial safety factor (=1.5).

For the steel reinforcement, a bilinear stress-strain relationship is considered:

Where:

f_{yd}: design yield strength.f_{yk}: characteristic yield strength.

 $\hat{\gamma_s}$: material safety factor (=1.15).

Design stress-strain curves of constitutive materials at ULS

List of Symbols" (Externally bonded FRP reinforcement for RC structures) Ym: makerial partial safety factor Eft: characteristic value of the recaret modules of FRP

a. fcd = d. fck | fck: characteristic value of the compressive street

The configuration of the compressive street

Configuration factor for long term to adding (= 0.85) fax: characteristic value of the compressive strength of : reduction factor for long terms toading (=0.85)

You : Partial sufety factor (=1.5)

Fed: design strength of concaste fyd = fyn (fyd: dange field strength of steel Fyx: characteristic yeald strength 85: material ratety factor (= 1.15) fed - tem ffd: derign FRP failure strength for : chanceboritic FRP failure streight 8 . FRP material rafety factor (= 1.20 to 1.50) resistance factors for steel; courte, FRP (following canadian code) Ps ; Pc , Pfrp material rafety factor for the show streight of Vcb = 1.5 Ya = 1.5 of adherive in the case of debonding FRP strain in the critical ration at Ultimate, initial strain prior to strangthening steel strain in the critical section at Ultimate Esu, c