

Remo Luetolf, Managing Director, ABB Switzerland Ltd.

Internet of Things, Services and People Opportunities for Advanced Services

The Internet of ... Global trend – 4th industrial revolution

The Internet of Things ABB things

Things	Robots	Motors
The Internet of Things (IoT) is the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data [1]		
The Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure [2]	Switchgear	Controllers
Smart, communicating devices by ABB		

[1] "Internet of Things Global Standards Initiative",[2] https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf

Industrial production infrastructure Interacting things

ABB

Automation systems The Intranet of Things

Automation systems The Intranet of Things

Information management Reliability vs. information density

Information management Local vs. remote potential

Business value of data Perception of risk

Package monitoring Monitoring and diagnostic potential

Fleet management Monitoring and diagnostics potential

Fleet management Predictive maintenance potential

Remote services Data driven services

Remote access infrastructure for service Cloud-based remote service benefits

Remote services Availability Fast resolution of issues by remotely connected expert Health & Safety Reduced personnel exposure in hazardous / remote areas Cloud-based infrastructure Cost structure Move from capex to opex Analytics Big benefits from better software tools for diagnostic analytics Distributed organization Better overview over corporate fleet of assets Common platform benefits One single interface to ABB remote access Proven back-end technology across all ABB offerings Common T&C for remote service infrastructure

Remote services Opportunities for cloud-based services

Data AggregationIf data from different contexts are combined, new insights may be found (etc.)	
measurements, weather, sales)	.g.
Statistical Analysis Random effects (ageing, fatigue) can be tracked by analyzing a large number of devices	
Demand Scalability Infrequent need for high computing power that is not available locally, or that is more effectively shared between users	
Geographical DistributionPlants are geographically distributed, data experts need global access to data from different sites	
Cross-organization collaboration To get the full picture, people from difference organizations (internal, external) have to cooperate and contribute their expertise	

Remote access infrastructure for service Customer concerns

Security

Concern to compromise plant security through remote access connections

Privacy

Concern to make data available for undefined use

Interoperability

Data cannot be easily accessed across differing application systems

Reliability

Customers expectations are driven by experience with operations system

Investment protection

Existing operation critical infrastructure can not be exchanged to support IoT, plant lifecycle is much longer than IT infrastructure

T capabilities

Services and applications Collaboration in the data driven ecosystem

Plant-side installations

Industrial Internet of Things – connecting devices to the cloud

Services and applications

Internet of People - service effectiveness and collaboration

Opportunities

Common access to collected data

- Complementing services analyzing data in fleet context vs. plant context
- Collaborating experts from different units cooperating on solving a customer issue

Targeted field service dispatch

- Remote diagnostics allow for immediate dispatch of the right person with the right tools and spare parts
- Remote service expert can support field service technician on-line and observe improvement through measured KPIs

Fast and efficient resolution of issues

Services and applications

Internet of Services - external ecosystem and partnerships

Services and applications Collaboration in the data driven ecosystem

IoT and Big Data Internet of Things as a service delivery tool

Application example: Robotics Remote service center

Internet of Things, Services and People in action

Application example: Marine FPSO^{*)} Yùum K'ak'Náab, Gulf of Mexiko

"The Remote Diagnostics Services provided by ABB is excellent. The process of solving problems between ABB and on-board personnel has been excellent, inclusive response time, reporting and auditable trail of problem solving process".

> Isak Arne Stensaker Maintenace Supervisor, FPSO Yuum K'ak'Naab

Customer's situation:

Drive tripped due to component failure.

Reduced cargo transfer capacity lead to delays in production.

On-board personnel not able to determine root cause of fault.

ABB solution:

Remote connection was requested.

Viewed historical data from time of fault.

Based on alarm and events participating crew was instructed to perform physical tests on specific parts related to the fault.

In cooperation the faulty part was detected and replaced with on-board spare part.

ABB remotely monitored initial start-up after part replacement.

Problem solved within 5 hours

Application example: Marine Energy management advisory suite for entire AIDA fleet

Customer's situation:

AIDA, German-based cruise operator, sets high demands in the environmental friendly solutions it deploys onboard the vessels:

to improve the environmental footprint of its fleet

to minimize the overall energy costs for the entire fleet

ABB solution:

Equip entire AIDA cruise fleet with:

SEEMP-compliant energy monitoring and

EMMA energy management system and decision-support tool to minimize the overall energy costs for individual vessels and entire fleets

All data generated onboard transferred to a cloud-based application for vessel benchmarking.

Provides management onshore with full visibility of energy consumption across the entire fleet.

Extensive ABB analytical services, including simulations, helps customer on future business case analysis

Application example: Mining Gearless mill drive monitoring

Customer's situation:

ABB receives an automatically generated e-mail indicating a problem with a gearless mill drive

Data analysis shows that the device will probably fail within 8 days

ABB solution:

Based on the data analysis, the customer was advised to immediately interrupt production for <30 min to clean dust filters to survive operation until next planned outage

At next planned outage, resolution of the problem by replacing components that were organized in time by the service organization

Outage could be kept at a minimum, avoiding unplanned production loss of ca. 1.4MUSD

Application example: Renewable power PV solar plant monitoring & operation

Customer's situation:

Minimum resource requirements for operating and maintaining a photovoltaic solar power plant

ABB solution:

A remote monitoring solution provides secure and efficient access to an increasing amount of data, collected from multiple remote plants

Automated analysis tools and applications transform the data stream into useful actionable information

Web portal provides easy access to dashboards and reports to users

Benefits:

Service experts have better access to data and can easily connect to a remote site, resulting in reduced response time and cost

This enables customers to:

- Improve their O&M strategies
- Increase performance and availability of their assets

Application example Integration of mobile measurement

Challenge:

Cost: fixed installation of diagnostic sensors too costly, they may be too expensive, or too rarely used to justify the investment

Age: Installed equipment was installed at a time when these sensors were not available (30-50 years ago)

ABB solution:

Use of mobile phone sensors to diagnose equipment ad-hoc

- Accelerometer for vibrations
- Compass for magnetic field
- Microphone for noise

Quick health indication sufficient to initiate further actions:

- Store device fingerprint and detect trends
- More precise measurements
- Service technician intervention

Application example: Safety support Interactive collaboration

Challenge:

Remote Analytics allows experts to remain remote, but actions still have to be executed locally

ABB solution:

Video support for field engineer, interacting with the remote expert

Interactive advice drawn on screen to indicate actions or to request information (meter reading, switch position, etc).

Remote interactive safety advice and mobile safety checklist for safe working environment

Remote interaction for safe working environment:

- Interacting with the expert on service and safety questions
- Mobile app support for safety checklists and documentation

Internet of Things, Services and People Conclusions

Intranet of Things – Internet of Things

Intelligent devices equipped with sensors are providing large amounts of data that is today used in the controls system

Today's essential requirements remain valid (safety, reliability), cyber security and data privacy become more important for all players along the value chain

Internet of People

People will not be obsolete in the future context, as they remain in control of the production process. People will be the decision makers

Internet of Services

Services will become more advanced through the use of data analytics. If the analytics results are not turned into improvement actions, customer benefits remain low. Opportunities for new service models that build on collaboration with partners and customers will evolve.

Power and productivity for a better world[™]

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

© Copyright 2015 ABB. All rights reserved.

