Umweltnutzen von E-Scooter

Zusatzinfo zur Postersession an der SwissMoto09, EMPA TSL

Mit einer Ökobilanzierung zum Ziel

Die hier präsentierten Ergebnisse zum "Umweltnutzen von E-Scooter" entspringen den Empa-Projekten "LCA for e-Mobility", "Reichweiten- & Verbrauchsmessung an E-Scooter" sowie "E-Scooter Technologie, " welche vom Bundesamt für Energie unterstützt werden und sich ausführlich mit den zu erwartenden Auswirkungen einer vermehrten Elektro-Mobilität befassen. Ein wichtiges Ziel ist die Nachführung der Ökoinventare für die Schlüsseltechnologien der elektrischen Antriebssysteme wie Batterien, Leistungselektronik, Motoren etc. aber auch Komponentenzuverlässigkeit, Lärmemissionen und Risikobeurteilung werden untersucht. Diese Arbeiten sind nicht abgeschlossen und somit sind die gezeigten Resultate vorläufig!

Wir beschränken uns hier auf den Vergleich der Auswirkungen durch den Fahrzeugbau und den Betriebsenergieverbrauch. Wir beschreiben die Auswirkungen auszugsweise durch drei heute breit diskutierte Grössen: die Treibhausgasemissionen (in CO2-Äquivalenten), den gesamten nichterneuerbaren Energieaufwand und die gesamten Umweltbelastungspunkte UBP06. Der Vergleich umfasst ein durchschnittliches Motorrad (CH-Flotte) mit Verbrennungsmotor (4Takt und 2Takt), einen PW der Golf-Klasse (ebenfalls Flottendurchschnitt) sowie einen E-Scooter (heutiges CH-Angebot) der mit 4 unterschiedlichen Stromarten betrieben wird: dem Europäischen Mix, dem Schweizerischen Mix, aus einem modernen Gaskombikraftwerk und aus reiner Photovoltaik.

Es zeigt sich dass für:

Die Treibhausgasemissionen (in CO2-Äquivalenten)

Ein PW (8.5 l/100km, 100'000km) verursacht auf seinem Lebensweg 31.2 Tonnen CO2, davon 3.9 Tonnen bei der Produktion. Dies entspricht 205g CO2/km nur für den Betrieb und 312 g CO2-eq/km für den gesamten Lebensweg. Ein E-Scooter (7 kWhel/100km = 0.8 L Benzin-äq, 50'000km) verursacht entsprechend 0.9 bzw. 0.4 Tonnen CO2 und mit dem CH-Strom-Mix 5 g CO2/km für den Betrieb sowie18 g CO2-eq/km für den Lebensweg. Statt 1 km Autofahrt könnten daher 17 km mit dem E-Scooter gefahren werden.

Motorrad (4Takt 5.6 l/100km, 50'000km): 129 g CO2/km bzw. 208 g CO2-eq/km Lebensweg) Motorrad (2-Takt, 4 l/100 km, 50'000km): 92 g CO2/km bzw. 167 g CO2-eq/km Lebensweg)

Den Energieaufwand (in MegaJoule, ein Liter Benzin enthält ca. 32MJ)

Ein PW verbraucht auf seinem Lebensweg 464'000 MJ (14'700 I Benzin-eq) Energie, davon 82'000 MJ (2'600 Leq.) bei der Produktion. Ein E-Scooter verbraucht entsprechend 38'000 bzw. 8'000MJ (1'200 bzw. 260 Liter Benzin-äq). Statt 1 km Autofahrt könnten daher 6 km mit dem E-Scooter gefahren werden.

Die Gesamte Umweltbelastung (Umweltbelastungspunkte UBP06)

Ein PW verursacht auf seinem Lebensweg 34 mio UBP, davon 11 mio UBP bei der Produktion. Ein E-Scooter verursacht entsprechend 2 mio bzw 1.1 mio UBP. Statt 1 km Autofahrt könnten daher 7 km mit dem E-Scooter gefahren werden.

Diese Resultate werden weiterverwendet, um einige Szenarien für die Schweiz und die Agglomeration Zürich zu berechnen, die den möglichen Nutzen eines vermehrten E-Scooter-Einsatzes aufzeigen sollen

A) nutzt ein Autopendler zusätzlich einen E-Scooter:

- kompensieren ca. 2'000 E-Scooter- statt Auto-Kilometer den Herstellungs-Energieaufwand. Und nach 10'000km sind insgesamt ca. 24'000MJ, (entspricht dem Energieinhalt von ca. 750 I Benzin) eingespart.
- kompensieren ca. 1'500 E-Scooter- statt Auto-Kilometer die Herstellungs-Treibhausgasemissionen. Und nach 10'000km sind insgesamt ca. 2.25 t CO2 eingespart
- ca. 5'000 E-Scooter- statt Auto-Kilometer die Herstellungs-Umweltbelastungen kompensieren und das nach 10'000km insgesamt knapp 1 Million Umweltbelastungspunkte eingespart sind.

Umweltnutzen von E-Scooter

Pressetext für SwissMoto08, EMPA TSL

- B) Das CO2 Gesetz verlangt bis 2010 eine 10%ige Reduktion der Emissionen gegenüber dem Stand von 1990. Welchen Beitrag können E-Scooter dazu leisten? Wären Anreizefinanzierungen mittels Klimarappen attraktiv?
- Der CO2 Überschuss der CH-Motorradflotte beträgt z.Z. ca. 140'000t/a.
- Dieser könnte zur Hälfte kompensiert werden, falls die ca. 250'000 Roller durch E-Scooter ersetzt und zum Pendeln benutzt würden (z.Z. pendeln insgesamt jedoch nur ca. 60'000 mit Motorrad und Roller).
- Würde die CO2 Einsparung 1:1 gemäss Klimarappen kompensiert, entspräche dies einer jährlichen Prämie von 25CHF pro E-Scooter.
- C) Die Fahrleistung der gesamten CH-Motorradflotte beträgt über 2 Mia. Kilometer und die gesamte Auto-Pendlerfahrleistung im Grossraum Zürich beträgt bei 250'000 Pendlern und durchschnittlich 22 km pro Tag ca. 1.1 Mia. Kilometer. Die Szenarienrechnungen ergeben, dass:
- mit 0.25% der schweizerischen Stromproduktion die gesamte 2-Rad Flottenfahrleistung erbracht werden könnte, wenn diese gänzlich 'elektrifiziert' würde. Würde sie nur soweit 'elektrifiziert', dass sie die CO2 Ziele erreichte, bräuchte es 0.14% der CO2-armen CH-Stromproduktion.
- Würde die gesamte Pendelfahrleistung (motorisierter Individualverkehr) der Metropolitanregion Zürich mit E-Scootern erbracht, müssten dafür 78GWh oder 0.13% der CH-Stromproduktion aufgewendet werden.
- Eine neue Studie des EWZ zeigt, dass die für Photovoltaik geeignete Dachfläche in der Stadt Zürich ca. 1.5 km2 beträgt. Damit liessen sich ca. 156GWh Strom erzeugen, womit zwei Mal die hypothetische Zürcher E-Scooter Pendlerflotte bewegt werden könnte.

Diese Arbeiten fussen auch auf den Messungen von Verbrauch und Reichweite an realen E-Scooter. Diese wurden mit heute üblichen Testzyklen, NEFZ und WMTC, ermittelt und sollen zu einer einheitlichen Messmethode führen, mit der unterschiedliche Elektro-2-Räder realistisch verglichen werden können.

Ausblick: sobald die Ökoinventare vervollständigt sind, können verschiedene Zweiräder miteinander verglichen werden, sowie die 2-Rad Flotte genauer charakterisiert werden. Zudem lassen sich die verschiedenen 'Lebensphasen" wie z.B. 'Produktion' und 'Betrieb' besser unterscheiden. Dies ist eine Voraussetzung um z.B. 'payback' Szenarien genauer zu rechnen.

Autoren: rolf.widmer@empa.ch & marcel.gauch@empa.ch

TSL Technology and Society Lab, <u>www.empa.ch/tsl</u>, **EMPA** Schweizerische Materialprüfungs- und Forschungsanstalt

Lerchenfeldstrassse 5, 9014 St. Gallen, +41 71 274 74 74

Umweltnutzen von E-Scooter

Vergleich mit Personenwagen

PW und E-Scooter im Vergleich

- 1 km Autofahrt verursacht gleich viele Treibhausgas-Emissionen wie 17 km E-Scooter-Fahrt
 - 1 km Autofahrt benötigt denselben Energieaufwand wie 6 km E-Scooter-Fahrt
 - 1 km Autofahrt verursacht dieselbe gesamte Umweltbelastung wie 7 km E-Scooter-Fahrt

Partner

EMPA St. Gallen

Lerchenfeldstrassse 5

9014 St. Gallen

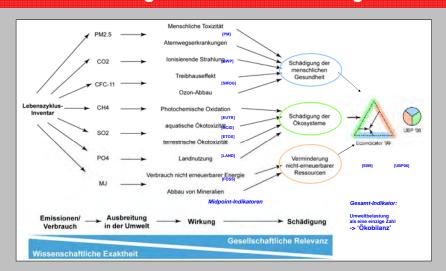
+41 71 274 74 74

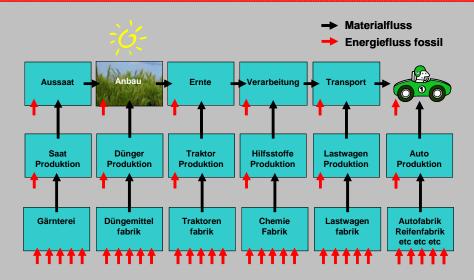
NewRide Schweiz Das Programm für E-Bikes und E-Scooters urs.schwegler@newride.ch www.newride.ch

> Bundesamt für Energie martin.pulfer@bfe.admin.ch www.bfe.admin.ch

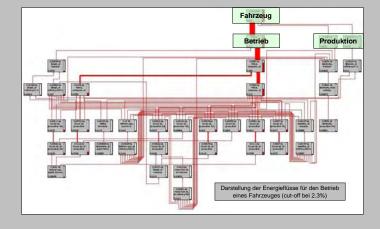
> > www.empa.ch/tsl

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Energie BFE




Ökobilanzierung Mobilität

Bewertung von Umweltauswirkungen



Beispiel: Fossiler Energiebedarf von Biotreibstoffen

Konkretes Beispiel eines Fahrzeugs

Die Ökobilanz eines Fahrzeugs kann aus >1500 Einzelprozessen aufgebaut sein

Kontakt

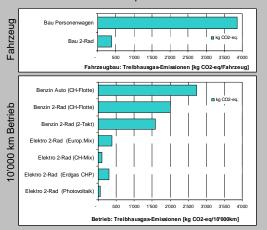
Vorläufige Resultate

Materials Science & Technology

Annahmen für Daten

 Auto Golfklasse, 8.5 l/100km, 205 g CO2/km (312 g CO2-eq/km Lebensweg)
 Entspricht dem Schweizerischen Flottendurchschnitt

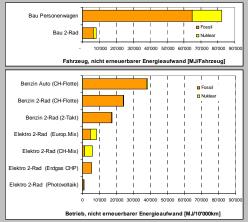
- Motorrad, 5.6 l/100km, 129 g CO2/km (208 g CO2-eq/km Lebensweg)
- Scooter 2-Takt, 4 I/100 km, 92 g CO2/km (167 g CO2-eq/km Lebensweg)


eBike bzw. eScooter, 7 kWhel/100km (0.8 LBenzin-eq)
 (18 g CO2-eq/km Lebensweg)
 entspricht dem heutigen eBike bzw eScooter Angebot in der Schweiz

Infrastrukturaufwand

- Gute Datenlage ist vorhanden f
 ür PWs (Golf)
- Die Datenlage für Motorräder und Scooter ist ungenügend
- Für die prov. Analyse wurde ein Motorrad als 1/10 des Infrastrukturaufwandes für ein Auto abgebildet und auf Plausibilität überprüft
- Datensätze für Batterien existieren, jedoch nicht für die Typen und Dimensionen die bei Elektromobilität in Frage kommen
- Moderne Lithium-Batterien bestehen aus Bestandteilen, die nach bisherigen Erkenntnissen unbedenklich scheinen bezüglich Verfügbarkeit, Toxizität und Rezyklierfähigkeit

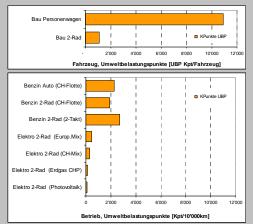
vorläufige Resultate der Ökobilanzstudie


Treibhausgas CO2-Äquivalente

	Bau Fahrzeug	Fz-Betrieb	Lebenszyklus	pro Kilometer	Faktor
	kg CO2-åq.	kg CO2-äq.	kg CO2-äq.	kg CO2-åq./km	-
Personenwagen 100'000 km	3'861	27'339	31'200	0.312	1
Motorrad (Flottenmix) 50'000km	386	10'024	10'410	0.208	1.5
Elektroscooter (CH-Mix) 50'000km	386	509	895	0.018	17

- Ein Auto verursacht in seinem Lebenweg 31,2
 Tonnen CO2, davon 3.9 Tonnen für die Produktion
- Ein eScooter verursacht in seinem Lebensweg 0.9 Tonnen CO2, davon 0.4 Tonnen in der Produktion
- Statt 1 km Autofahrt können 17 km mit Elektroscootern gefahren werden (gesamter Lebenszyklus)

Energieaufwand MegaJoule

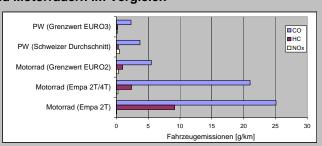


	Bau Fahrzeug	Fz-Betrieb	Lebenszyklus	pro Kilometer	Faktor
			MJ	MJ./km	-
Personenwagen 100'000 km	82'365	382'201	464'566	4.646	1
Motorrad (Flottenmix) 50'000km	8'236	121771	130'007	2.600	2
Elektroscooter (CH-Mix) 50'000km	8'236	29'421	37'657	0.753	6

- Ein Auto verbraucht in seinem Lebenweg 464'000 MJ (14'700 LBenzin-eq) Energie, davon 82'000 MJ (2'600 Leq.) für die Produktion
- Ein eScooter verbraucht in seinem Lebensweg 38'000 MJ (1'200 LBenzin-eq) Energie, davon 8'000 MJ (260 LBenzin-eq) in der Produktion
- Statt 1 km Autofahrt können 6 km mit Elektroscootern gefahren werden (gesamter Lebenszyklus)

Gesamte Umweltbelastung

Umweltbelastungspunkte UBP06


	Bau Fahrzeug	Fz-Betrieb	Lebenszyklus	pro Kilometer	Faktor
	Kpunkte UBP	Kpunkte UBP	Kpunkte UBP	KpunkteUBP/km	
Personenwagen 100'000 km	10'910	22'871	33782	0.338	1
Motorrad (Flottenmix) 50'000km	1'091	9'559	10'650	0.213	2
Elektroscooter (CH-Mix) 50'000km	1'091	1'460	2'551	0.051	7

- Ein Auto verursacht in seinem Lebenweg 34'000 Kpt UBP, davon 11'000 Kpt UBP für die Produktion
- Ein eScooter verursacht in seinem Lebensweg 2'600 Kpt UBP, davon 1'100 Kpt UBP in der Produktion
- Statt 1 km Autofahrt können 7 km mit Elektroscootern gefahren werden (gesamter Lebenszyklus)

Emissionen

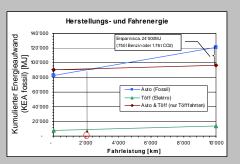
Emissionen von Personenwagen und Motorrädern im Vergleich

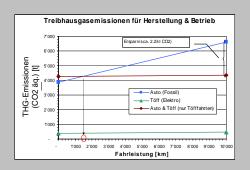
Emissionswerte				co	HC	NOx
				g / km	g/km	g/km
Personenwagen						
Grenzwerte	EURO3 (2000)	Personenwag	en	2.3	0.2	0.15
Ecoinvent (real)	EURO3	CH-Durchschi	nitt	3.71	0.311	0.485
Motorräder						
Grenzwerte	EURO2 (2002)	Motorräder		5.5	1	0.3
EMPA Messung	MIX CADC 2T/4T	urban	0.5	22.2	3.77	0.148
		rural	0.25	15.4	1.32	0.205
		highway	0.25	24.3	0.7	0.512
		Durchschnitt		21.03	2.39	0.253
	2-Takt	Scooter 1		8.1	5.72	0.076
		Scooter 2		42.1	12.62	0.007
		Durchschnitt		25.1	9.17	0.0415

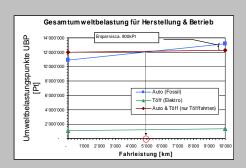
Empa-values: [Vasic, Weilenmann (Empa); Comparison of Real-World Emissions from Two-Wheelers and Passenger Cars; Environmental Science and Technology Vol.40; 2006]

- Deutliche Unterschiede zwischen Theorie (Grenzwerte) und Praxis
- Real gemessene Werte bei Motorrädern liegen z.T. weit über den Emissionsrichtlinien
- 2-Takter haben besonders hohe CO-Werte und besonders tiefe NOx-Werte (tiefe Verbrennungstemperaturen)

Szenarien für Umweltnutzen

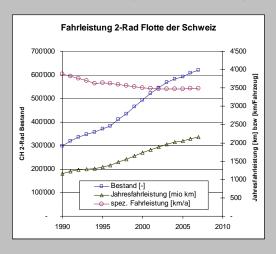


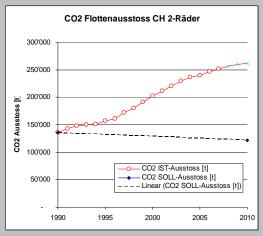

Materials Science & Technology


A) 'Break Even' von fossiler Energie, Treibhausgas und Gesamtumweltbelastung?

Wieviele Kilometer muss der e-Scooter anstatt des Autos benutzt werden um seine Herstellung gemäss folgenden Indikatoren zu kompensieren :

- fossiler Gesamtenergieverbrauch (in MJ)
- gesamter Treibhausgasausstoss (in t CO2 äq.)
- gesamte Umweltbelastung (in Umweltbelastungspunkten UBP)


Es zeigt sich dass:


- ca. 2'000 e-Scooter- statt Auto-Kilometer den Herstellungs-Energieaufwand kompensieren. Und das nach 10'000km insgesamt ca. 24'000MJ, (entspricht dem Energieinhalt von ca. 750 l Benzin) eingespart sind
- ca. 1500 e-Scooter- statt Auto-Kilometer die Herstellungs-Treibhausgasemissionen kompensieren. Und das nach 10'000km insgesamt ca. 2.25 t CO2 eingespart sind
- ca. 5'000 e-Scooter- statt Auto-Kilometer die Herstellungs-Umweltbelastungen kompensieren. Und das nach 10'000km insgesamt knapp 1 Million Umweltbelastungspunkte eingespart sind

B) Erfüllen des CO2-Gesetzes / der Kyoto Ziele in der 2-RadFlotte?

Das CO2 Gesetz verlangt eine 10% Reduktion der Emissionen gegenüber dem Stand von 1990:

- Welchen Beitrag können e-Scooter dazu leisten?
- •Wären Anreiz-Finanzierungen in der Grössenordnung Klimarappen attraktiv?

Es zeigt sich dass: ...

- ... der CO2 Überschuss der CH Motorradflotte beträgt ca. 140'000t/a
- ... dieser zur Hälfte kompensiert werden könnte, falls die ca. 250'000 Roller durch e-Scooter ersetzt und zum Pendeln benutzt würden (zZ pendeln insgesamt jedoch nur ca. 60'000 mit Motorrad und Roller).
- ... würde die CO2 Einsparung gemäss dem Klimarappen kompensiert, könnte jeder e-Scooter eine jährliche Prämie von ca. 25 CHF erhalten.

C) Wie hoch ist der zusätzliche Strombedarf?

Strombedarf der fiktiv umgerüsteten CH-Motori		
Stromproduktion CH (BFS 2006)	GWh/a	
Schweizerische 2rad-Flotte (BFS 2006)	2'120'000'000	km/a
Energiebedarf Fahrzeug	5	kWh/100km
Wirkungsgrad	0.70	-
Energiebezug aus Netz	7	kWh/100km
Strombedarf CH 2rad-Flotte	151'428'571	kWh/a
Anteil an CH-Stromproduktion	Prozent	

Strombedarf Pendler in ZH bei Umstieg auf eBikes (statistik.info 18/2005)								
Pendler Individualverkehr total	500'000	Pendler						
Pendler Individualverkehr (PW, Motorrad)	250'000	Pendler						
durchschnittliche Pendeldistanz	22	km/d						
durchschnittliche Arbeitstage	200	d/a						
gesamt Pendeldistanz ZH	1'100'000'000	km/a						
Energiebedarf pro Fahrzeug ab Netz	7	kWh/100km						
Strombedarf ZH-Pendler	77'000'000	kWh/a						
PV-Panelfläche auf Dachflächen Stadt ZH gut	1'564'000	m?						
geeignet für Solarenergie (ewz, Studie Novak 07)	1 304 000	IIIZ						
Stromertrag Stadtzürcher Dächer pro Jahr	156'400'000	kWh/a						
Anteil Dach-PV an ZH-Pendler-Strombedarf	203%	Prozent						

Situation Schweiz:

Was wäre der Strombedarf, wenn alle 2-Räder elektrisch betrieben würden?

- Die Fahrleistung der gesamten Motorradflotte beträgt über 2 Mia. Kilometer
- Welchen Anteil an der Gesamtstromproduktion würde die 2-Rad Fahrleistung ausmachen?

Situation Zürich:

Was passiert, wenn alle Auto-Pendler in Zürich auf elektrische 2-Räder umsteigen?

- Die gesamten Auto-Pendlerkilometer in Zürich betragen ca. 1.1 Mia. Kilometer
- Welchen Anteil könnten die Stadtzürcher Dachflächen mit Photovoltaik liefern?

Es zeigt sich dass: ...

- ... mit 0.25% der Stromproduktion die gesamte 2-Rad Flottenfahrleistung erbracht werden könnte, wenn sie gänzlich 'elektrifiziert' würde. Würde sie nur soweit 'elektrifiziert', dass sie die CO2 Ziele erreichte, bräuchte es 0.14% der Stromproduktion (die für den CH-Strommix CO2-arm ist)
- Die gesamte **Pendelfahrleistung (motorisierter Individualverkehr) von Zürich** entspricht ca. der Hälfte 2-Rad Flottenfahrleistung der ganzen Schweiz. Würde diese gänzlich mit e-Scootern erbracht, müssten dafür 78GWh oder **0.13% der CH-Stromproduktion** aufgewendet werden.
- ... Eine neue Studie des EWZ zeigt, dass die für Photovoltaik geeignete Dachfläche in Zürich ca. 1.5 km2 beträgt. Damit liessen sich ca. 156GWh Strom erzeugen, womit zwei Mal die hypothetische Zürcher e-Scooter Pendlerflotte bewegt werden könnte.

Nachhaltigkeit von Bioenergie

Materials Science & Technology

Sind Biotreibstoffe eine Option für die Zukunft?

EU: Beimischung 5.75% bis 2010

EU: Beimischung 10% bis 2020

>2007 >>2008

2010

2020

Zukunft?

CH 2007: Revision Mineralölsteuergesetz

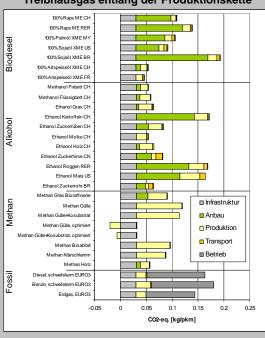
- positive ökologische Gesamtbilanz
- keine neg. sozialen Auswirkungen

CH ab 1.7.08: Verordnung zum Mineralölsteuergesetz

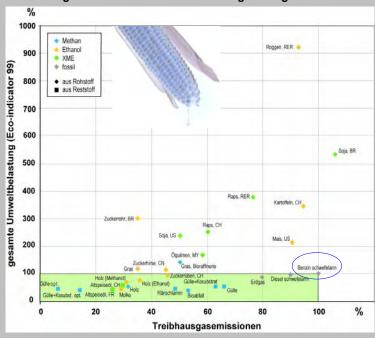
- Steuererlass für Treibstoffe aus Reststoffen
- Steuererlass für Agrotreibstoffe nur gegen Nachweis

PRO

- Massnahme gegen Klimawandel
- Unabhängigkeit von Erdöl
- Schaffung von Arbeitsplätzen



CONTRA


- Massnahme gegen Klimawandel ungenügend
- Irreversible Umweltschäden
- Enormer Flächenbedarf
- Konkurrenz zu Nahrungsmittelproduktion

Resultate Ökobilanzstudie

Treibhausgas entlang der Produktionskette

Treibhausgas und Gesamt-Umweltbelastung im Vergleich mit Benzin

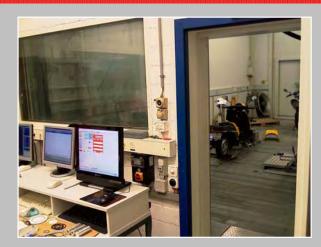
- Mit diversen Biotreibstoffen können in der Gesamtbilanz Treibhausgas-Reduktionen von > 50% im Vergleich mit Benzin erzielt werden
- Die höchsten Treibhausgas-Emissionen kommen aus den agroindustriellen Anbau
- Biotreibstoffe aus Reststoffen erzielen gute Resultate, Agrotreibstoffe haben z.T. eine deutlich höhere gesamte Umweltbelastung als Benzin
- Durch gezielte Massnahmen lassen sich die Umweltauswirkungen reduzieren (Schutz Regenwald, keine Brandrodung, kein Methanschlupf)

Beyond Biofuels: ein Zukunftsthema

Methane Manure / Car Methane Methane Biowaste / Car Methane Wood SynGas / Car Methane Ethanol Sugar Cane BR / Car Ethanol Ethanol Biomass CH / Car Ethanol Ethanol Com US / Car Ethanol Veg. Oil (used) ME CH / Car Methylester PalmME MY / Car Methylester RapeME CH / Car Methylester Natural Gas / Car NatGas Gasoline / Car Gasoline Diesel / Car Diesel n/a fdssil Electricity UCTE-mix EU / Car Electric n/a fossil Electricity CHP NatGas / Car Electric n/a fo Electricity Photovoltaics / Car Electric 37 1000 2000 Area required per car @ 10'000 km/yr [m2]

Um 50 Autos je 10'000km/Jahr zu betreiben, braucht es:

mit Benzinautos:
 9 Fussballfelder (7ha) mit
 Hochertrags-Energiepflanzen


 mit Elektroautos:
 1 Stalldach (600m2) mit einer modernen Photovoltaikanlage

Verbrauchsmessmethode für E-Scooter

Ziel: Vergleich von Fahrleistung und Reichweite

- Entwicklung einer Verbrauchsmessmethode für Elektro 2-Räder (E-Scooter, E-Töff etc. ohne Trethilfen)
- Die Methode ist einfach, kostengünstig und allgemein anwendbar (d.h. bestehende Rollenprüfstände, minimale Messtechnik)
- Einerseits wird das Zyklusverhalten des Fahrzeugs auf der Prüfrolle ermittelt (Fahrzeugdynamik: Trägheit, Beschleunigung, Leistung, ...)
- Andererseits wird das Zyklusverhalten des Batteriesystems ermittelt (Batteriedynamik: Spannung, Kapazität, Leistung, ...)
- beide Aspekte (Fahrzeugdynamik & Batteriedynamik) werden rechnerisch verknüpft, um Fahrleistung / Reichweite zu ermitteln.
- Vergleich mit tatsächlichen Fahrleistungen (reale Fahrversuche)
- Weiterentwicklung zum 'prüfstandfreien Test'

Testfahrzeuge und Fahrzyklen

Quantya "Evo 1"

Oxygen "Postscooter"

Mobilec "Mobilec"

make [-]	model [-]	empty mass [kg]	battery capacity [kWh]	power [kW]	gearbox [-]	voltage [V]	velocity v_max [km/h]	NEFZ class [-]	WMTC class [-]
Quantya	Evo-1 Strada	85	2	8.5	none	48	>70	part 1urban	1 reduced
Oxygen	Postscooter	178	4.8	3	none	48	45	part 1urban	1 reduced
Mobilec	Mobilec	90	0.9	0.8	none	24	30	part 1urban	1 reduced

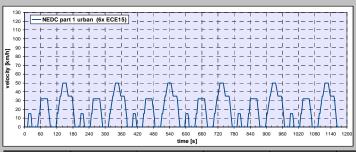
Erste Resultate

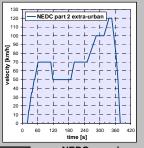
				Spez.	Verbrauch	Rechnerische
make		Energieverbrauch	Distanz	Energieverbrauch	Benzin äquivalent	Reichweite
[-]	Zyklus	[Wh]	[km]	[Wh/km]	[Liter/100km]	[km]
Oughtys	NEFZ	221	6.022 (6.088 -1.1%)	36.70	0.415	54
Quantya	WMTC	142	3.881 (3.837 +1.1%)	36.59	0.413	55
Ovvenon	NEFZ	171	5.796 (6.088 -4.8%)	29.50	0.333	163
Oxygen	WMTC	112	3.868 (3.837 +0.8%)	28.96	0.327	166
Mobilec	-	450	21.667 (-)	20.77	0.235	43

Bemerkungen:

- Quantya: die Reichweite wird wie bei den anderen Testfahrzeugen aus dem ermittelten spezifischen Verbrauch und der Batteriekapazität (gemäss Herstellerangaben) errechnet.
- Oxygen: die geforderten max. Geschwindigkeiten beider Testzyklen werden nicht erreicht. Die erwartete Fehldistanz zeigt sich jedoch nur beim NEFZ (-5%) und ist so gering, dass sie den spezifischen Energieverbrauch kaum beeinflusst.
- Mobilec: konnte auf der Rolle keinem der Standart-Testzyklen folgen. Die angegebenen Werte ergeben sich aus dem vereinfachten "v_max Fahrzyklus" (...die voll geladene Batterie wird mit maximaler Fahrgeschwindigkeit auf der Rolle entladen, bis das Batteriemanagementsystem erstmals den Strom unterbricht...).

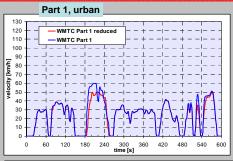
Energy Consumption of Electric Vehicles

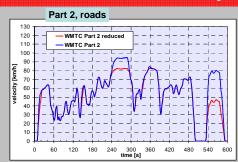


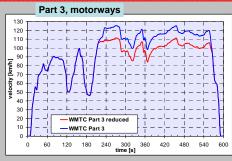

Test Cycles for Motorbikes

- Purpose: Standardized measurements of fuel consumption and emissions on a roller dynamometer test bench
- The most often used test cycle is the NEDC (New European Driving Cycle), a simple artificial cycle often criticized to be unrealistic (especially for motorbikes)
- The WMTC (Worldwide Harmonized Motorcycle Test Cycle) is similar to a real-world cycle. It is based on a broad international initiative.
- WMTC is expected to be the future standard replacing the NEDC and other cycles.
- There is no standard for the measurement of energy comsumption of electric vehicles to date.

NEDC (New European Driving Cycle)




part	part time		avg. speed	max. acceleration	max. deceleration	
	[s]	[m]	[km/h]	[m/s2]	[m/s2]	
urban	1170	6'088	18.7	1.04	-0.93	
extraurban	400	6'955	62.6	0.83	-1.39	
total	1570	13'042	29.9	1.04	-1.39	


NEDC overview:

- 2 parts (~20 min, urban, ~7 min, extra-urban)
- categorization in vehicle classes? E-Scooters?
- smooth acceleration/deceleration rates

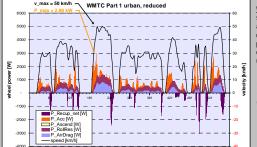
WMTC (Worldwide harmonized Motorcycle Test Cycle)

Vehicle	ehicle Class definition		Class definition	Part 1 Urban		Part 2 Country		Part 3 Motorway	
class	subclass	combustion engines	electric motorcycles	reduced 50 km/h	normal 60 km/h	reduced 82 km/h	normal 95 km/h	reduced 111 km/h	normal 125 km/h
1			vmax < 50 km/h vmax = 50 100 km/h	X X					
2	2-1	vmax 100115 km/h; engine < 150 cm ³ and vmax < 115 km/h; engine ?150 cm ³	vmax = 100 114 km/h	х		х			
	2-2	vmax 115 130 km/h	vmax = 115 129 km/h		Х		х		
3	3-1	vmax 130 140 km/h	vmax = 130 139 km/h		Х		Х	Х	
_ •	3-2	vmax >= 140 km/h	vmax > 140 km/h		Х		Х		Х

	part	time [s]	distance [m]		avg. speed [km/h]		max. acceleration [m/s2]		max. deceleration [m/s2]	
			normal	reduced	normal	reduced	normal	reduced	normal	reduced
1	l - urban	600	4'065	3'837	24.4	23.0	2.51	1.72	-2.00	-1.94
2	2 - roads	600	9'111	8'448	54.7	50.7	2.68	1.77	-2.02	-2.02
3 -	motorways	600	15'736	14'436	94.4	86.6	1.56	1.56	-2.00	-2.00
	total	1800	28'913	26'721	57.8	53.4	2.68	1.77	-2.02	-2.02

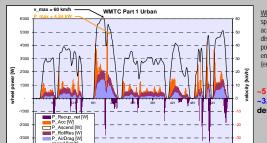
WMTC overview:

- 3 parts, 10 min. each
- categorization in 5 vehicle classes/subclasses
- E-Scooters with v_max < 100 km/h belong to class 1 reduced with v max = 50 km/h
- realistic acceleration/deceleration rates


GTR (Global Technical Regulation for manufacturers and markets) Swiss working group members:

- ASTRA
- Empa Dübendorf HTA Biel

Example for model calculations: Scooter in WMTC


Scooter characteristics weight vehicl weight driver: 120 kg 0.75 m2 projection area air drag coefficient: rolling resistance:

- Parameters on the left can be identified through any arbitrary real-world driving cycle with a GPS-logger.
- If these parameters are known, the power requirement and energy consumption can theoretically be calculated for a given driving cycle
- If the efficiency of a drivetrain is known or well estimated, the real power and energy demand of a vehicle could accurately be calculated
- Electric vehicles will eventually allow accurate indications of energy consumption without expensive dynamometer test benches

WMTC part 1 reduced 50 km/h distance (10 min): energy (100km): 2.90kWh

urban cycle

60 km/h 2.51 m/s2 distance (10 min) 4065 m 3.17kWh

demand for full urban cycle