FOCUS

BUILDING SMARTER

EXPERIMENTAL HEAT STORAGE
GENTLER CANCER TREATMENT
TOXIC TRACES IN A NATIONAL PARK
DEAR READER,

If you know your material, you can make the most amazing things out of it: an adhesive from cellulose to restore old works of art, a cancer treatment with fewer side effects from metal oxides, or a low-cost thermal imaging camera from ultra-thin multi-layer coatings.

All these are clever ideas, developed in one of the 30+ Empa labs, which have one thing in common: Their inventors dared to venture outside their own disciplines and joined forces with colleagues with entirely different backgrounds. In short, they have thought outside the box — in the most literal sense. Because this is the only way to create something really new, i.e. what constitutes a true innovation at its (word) core.

Even if we “just” build, we try to gain insights for novel solutions. For instance, through an experimental borehole field as a sustainable seasonal heat storage system for the winter, which we are currently installing under our new laboratory building at a depth of around 100 meters (p. 22), or in the new NEST unit Sprint, which was created entirely from used and recycled materials (p. 19).

So much creativity often takes time, i.e. money. That is why we have decided to increasingly approach private donors. We will report regularly on how we use the funds we raise, starting with an article on a process for making concrete much more environmentally friendly (p. 24).

Enjoy reading and see you in the next issue!

Your MICHAEL HAGMANN
INSIGHTS

STICKY ART

Preserving historic wooden works of art for future generations is anything but trivial. The 19th century pyrography on a thin lime wood panel pictured here is completely broken apart; the thumbnail in the top left corner shows merely one half of the artifact. Researchers at Empa and the University of the Arts in Bern have developed a cellulose glue that joins the lime wood together in a stable and at the same time gentle way. This is because the wood-based adhesive does not damage the artwork and yet defies the often harsh environmental conditions of cultural assets in old castles or damp church cellars.

Information on the research project:
www.empa.ch/web/gei/wnb

Photo: Karolina Soppa, HKB
Since July, the Swiss Platform for Advanced Scientific Computing has been funding a three-year project led by Empa researcher Dominik Brunner – on a major challenge for computational models: climate. Atmospheric processes with their interactions and consequences for global warming or air pollution have long since pushed conventional computers to their limits – and more powerful architectures into play. GPUs (Graphic Processing Units) calculate massively in parallel, but they require different programming. With the HAMAM project, the team aims to make two particularly computationally intensive extensions of the ICON weather and climate model fit for GPUs: the ART module for air quality simulations and HAM for the interactions between aerosols and climate. These models will be implemented and tested on the supercomputer Piz Daint at the Swiss National Supercomputing Center in Lugano.

BIOTECH VIOLIN IS COMING HOME

Walter Fischli, President of the Board of Trustees of the foundation of the same name in Allschwil (BL), recently handed over the “Caspar Hauser II” Mycowood violin to Empa representatives. The foundation supports a long-standing research project at Empa, in which biotech violins are being developed: With the help of a white rot fungus, the team led by Empa researcher Francis Schwarze has succeeded in developing a process, in which fungi break down wood cells in a very specific manner – and in the process changes the acoustic properties of the tonewood. In this way, the Empa scientists produced so-called Mycowood that gave the “Caspar Hauser II” its body. The instrument is an exact copy of a Guarnieri master violin from 1724, and initial comparative acoustic analyses of the original and its biotech copy have already proved promising. Now the Mycowood instrument has been returned to its “birthplace”. But only for a short time: In order for the “Caspar Hauser II” to develop a unique soul in addition to its extraordinary body, the instrument will be allowed to develop its sound through frequent performances in the coming years. To celebrate the handover, the virtuoso violinist Irina Pak from the Tonhalle Orchestra Zurich played on the “Caspar Hauser II”. The violinist elicited both contemporary sounds as well as baroque melodies from the time the original violin was built from the new violin.

CALCULATED WITH ICON-ART

The map shows the distribution of nitrogen monoxide (NO) on 19 January 2015 at 4 pm. You can see cities and roads as NO sources. In the west, the distribution is smoother than in the east – due to chemical processes and because the sun has already set in the east.

BETTER CLIMATE MODELS THANKS TO SUPERCOMPUTERS

Since July, the Swiss Platform for Advanced Scientific Computing has been funding a three-year project led by Empa researcher Dominik Brunner – on a major challenge for computational models: climate. Atmospheric processes with their interactions and consequences for global warming or air pollution have long since pushed conventional computers to their limits – and more powerful architectures into play. GPUs (Graphic Processing Units) with many processors calculate massively in parallel, but they require different programming. With the HAMAM project, the team aims to make two particularly computationally intensive extensions of the ICON weather and climate model fit for GPUs: the ART module for air quality simulations and HAM for the interactions between aerosols and climate. These models will be implemented and tested on the supercomputer Piz Daint at the Swiss National Supercomputing Center in Lugano.

SPIN-OFF ON THE ROAD TO SUCCESS

On track in just a few years: IRsweep was founded in 2014 – as a spin-off from Empa and ETH Zurich. In May, Sensirion, a manufacturer of digital microsensors and systems, took over the young company with its eleven employees. Its laboratory spectrometers with frequency comb technology in the mid-infrared range are used in research and development to detect rapid chemical reactions in the shortest possible time. IRsweep instruments are already in use in Europe, North America and Asia. In the long run, this technology might be used to create low-cost sensors that can detect traces of gases in the environment, for instance.

PRECIOUS

Walter Fischli, president of the Walter Fischli Foundation (right), hands over the Mycowood violin to Empa researcher Francis Schwarze, who invented the technology.

A MUSICAL TREAT

Irina Pak from the Tonhalle Orchestra Zurich played the Mycowood violin – with obvious enthusiasm.

IN BRIEF
Radiation therapy is one of the cornerstones of cancer therapy. However, some types of tumor respond little or hardly at all to radiation. If it were possible to make tumor cells more sensitive, treatment would be more effective and gentler. Empa researchers have now succeeded in using metal oxide nanoparticles as “radiosensitizers” – and in producing them on an industrial scale.

Text: Andrea Six

Today, various treatment methods are available for cancer that can complement each other. Radiation therapy is frequently used, and can be combined with surgery and chemotherapy, for example. Although treatment with ionizing radiation has been used in medicine for more than 100 years, even modern oncology is sometimes not satisfied with its effectiveness. The reason: Malignant tumors are not always sensitive enough to radiation. “If the sensitivity of the tumor cells could be increased, radiotherapy could be carried out more effectively and more gently,” says Empa researcher Lukas Gerken.

In other words: A desired treatment outcome could achieve with a lower dose of radiation than is currently the case, or particularly radiation-resistant tumors could finally become sensitive to radiation. The team led by Lukas Gerken and Inge Herrmann from the “Particles-Biology Interactions Laboratory” at Empa in St. Gallen and the “Nanoparticle Systems Engineering Laboratory” at ETH Zurich is therefore working with oncologists at the Cantonal Hospital in St. Gallen to find ways to sensitize tumor cells to radiation.

The researchers have set their sights on nanoparticles made of metal oxides that can act as so-called radiosensitizers. The team has now succeeded in producing these radiosensitizers in large quantities and analyzing their effect in more detail. The researchers recently published their results in the journal Chemistry of Materials.

CURED IN THE FIRE

In cancer research, studies are currently underway with various classes of substances to make the irradiation of tumors more effective. Exactly how nanoparticles made of gold or more exotic metal oxides such as hafnium dioxide work in this context is not yet fully understood. What is known, though, is that a complex reaction cascade exerts oxidative stress in cancer cells. In this way, the repair mechanisms of the malignant cells may be overwhelmed.

In order for the nanoparticles to be made available for clinical use, two hurdles had to be overcome: Production via conventional wet chemistry methods makes it difficult to produce quantities on an industrial scale, and there is a lack of comparative analyses on the efficacy of different substances.

Empa researcher Gerken has now succeeded in producing metal oxide radiosensitizers using a method that is ideally suited to industrial applications: He relied on flame synthesis to obtain top-quality oxides of hafnium, zirconium, and titanium. “Thanks to this production method, it is even possible – depending on the production facility – to synthesize several kilograms per day,” explains Gerken. For the laboratory analyses at Empa, however, the scientist made do with just a few grams.

BETTER THAN GOLD

Once the nanoparticles were available in suitable quantities, Lukas Gerken was able to screen the “gems” in detail, for example using X-ray spectroscopy and electron microscopy. His verdict: “We can produce sterile, high-quality metal oxide nanoparticles that appear harmless to healthy cells,” the researcher explains. He proved this using cell cultures that he treated with different nanoparticle suspensions in the lab. The metal oxides accumulated in large quantities inside the cells. The front-runner was hafnium dioxide: Here, half a billion nanoparticles entered each individual cell without being toxic. Compared to the metal oxides, nanogold did much worse with the same particle size. About 10 to 30 times fewer gold particles made it into the cell.

As harmless as the substances initially are to healthy cells, they unfold their effects powerfully when used in radiation. The team was able to demonstrate this using cancer cell lines. If the cell cultures were treated with metal oxides and then bombarded with X-rays, the killing effect increased significantly. Hafnium dioxide turned out to be the most potent tool: Tumor cells treated with hafnium particles could be eliminated with less than half the radiation dose. This first comparative study also showed that hafnium dioxide is even four times more effective than nanogold and titanium dioxide. Healthy human cells (so-called fibroblasts), on the other hand, showed no negative radiation effects after nanoparticle treatment.

The results make Lukas Gerken confident: “We will continue on this path to explore the nanoparticles’ mechanism of action and further optimize their efficiency.” He hopes that his studies will thus advance the clinical application of nanoparticles in radiation therapy.

Further information on the topic is available at: www.empa.ch/webi403
SEEING THE WORLD THROUGH DIFFERENT EYES

Short-wave infrared light (SWIR) is useful for many things: It helps sort out damaged fruit and inspecting silicon chips, and it enables night vision devices with sharp images. But SWIR cameras have so far been based on expensive electronics. Researchers at Empa, EPFL, ETH Zurich and the University of Siena have now developed a SWIR screen consisting of just eight thin layers on a glass surface. This could make IR cameras useful everyday objects.

Text: Rainer Klose

Infrared (IR) light is invisible to humans. However, some animals, such as rattlesnakes or bloodsucking bats, can perceive IR radiation and use it to find food. But even for humans, the ability to see in the short-wave IR (SWIR) range would sometimes be useful. With the help of starlight alone, one could see quite sharply at right. Mechanics would be able to see the heat of a soldering tip at a glance. And fruit merchants could detect damaged produce even before the rotting process begins.

But IR light has a “problem”: It is weaker than visible light and than UV light on the other side of the light spectrum. So while UV light makes white shirts and dancers’ teeth glow blueish in a club – all it takes is a fluorescent dye in the laundry detergent – IR light is difficult to make visible for the human eye. This is because dyes can convert high-energy light directly into low-energy light, but not the other way around.

AN ENTIRE IR CAMERA ON A CHIP

So IR cameras require sophisticated electronics to capture IR light, an electronic amplifier, and finally a screen to display the artificially generated image. This is expensive. Today’s standard SWIR cameras for industrial use cost around 7,000 Swiss francs.

Empa researchers Roland Hany, Karen Strassel, Wei-Hsu and Michael Bauer have now succeeded in capturing SWIR light – and making it visible – with a single component. The device developed at Empa is basically an OLED display with three additional layers (see graphic). IR light falls through an electrically conductive glass pane onto a dye layer in a photodetector. Therein, electrons begin to migrate, their motion being amplified by an electrical voltage. The electrical charges then migrate into the OLED layer, where they produce a green light spot. Electronic signal processing by a computer is not necessary: The incoming (invisible) SWIR light is amplified in an “analog” way, so to speak, and displayed directly on the screen. The color of the emitted visible light – blue, green, yellow or red – can be adjusted by selecting the dye in the OLED.

NIGHT VISION – AND SORTING BEANS

SWIR light is useful for many applications in the food industry, logistics or crafts. For example, one can visualize the temperature of soldering tips or monitor the cooling of newly manufactured jars and bottles. SWIR light makes moist objects appear darker, which is useful for sorting coffee beans or black olives: Stones and metal objects as impurities shine brightly among all the dark (moist) fruit on a conveyor belt.

The key to Roland Hany’s SWIR screen is special dyes that he and his colleagues have been investigating for quite a while, so-called squaraines. The name comes from the basic structure of the chemical molecule, squaric acid. This class of dyes was first discovered in the 1960s and is characterized by deep colors and a high temperature stability. The researchers chemically modified the squaric acid so that it absorbs in the range of SWIR light. “Right now, we’re working with dyes that absorb at just under 1000 nanometers,” Hany says. “But we’re already working on shifting the absorption to longer wavelengths, further into the IR range. If we succeed, our sensor will be able to detect water and moisture much better than it does now.”

IN SEARCH OF AN INDUSTRIAL PARTNER

Hany likes to call the module he developed with his group OUC, or organic upconversion device. That’s because it converts weak IR light into stronger visible light (“upconversion”) and works by using thin layers of dye made from carbon-based chemistry (“organic”). One problem is that the know-how to manufacture organic optoelectronic devices on an industrial scale is mainly located in Asia. Hany is confident, however, that his discovery will soon come to fruition: “Right now, we’re working on increasing the sensitivity of the module and improving its long-term stability.”

Photo: iStock
Insulation webs are essential in aluminum window profiles and facades for good thermal insulation. Empa researchers and their partners have been working for some time on a novel “sandwich” product with an environmentally friendly filling: recycled material from PET bottles. Now the market launch is approaching – with good prospects of success.

Text: Norbert Raabe
the insulation web.

Below: An early prototype of recycled bottles.

From the use of PET from another polymer, polyamide (around 0.25 W/mK), and also significantly lower thermal conductivity of the web – far less than high-end products available today.

A simple approach, as it seems at first glance – but to turn this seemingly simple idea into a viable product, a lot of conceptual work was required as part of an Innosuisse-funded project. Take the production method, for instance: Empa’s Michel Barbezat conveys. “Technically, we certainly have the potential of the finished overall profile, such as powder coating or anodizing.

From numerous samples, the developers distilled seven variants for testing – altogether an insulation web about 1,000 meters in length – and from these the final prototype as the basis for the finished products. An important step in the production process was also achieved along the way: The web is virtually as tough as possible – without the need for another “seam” to be glued. “This is already a big advantage,” says metal construction engineer Frank Hochuli from Empa’s industrial partner. “There are no local weak spots where material could come off. And the fewer steps, the cheaper the product.”

The German experts not only repeated the Swiss tests, but also subjected the prototypes to fire and fracture tests as well as other stresses – for example, to invisible microcracks. After 1,000 hours of storage in oil or light acid, or to strong tension in the transverse direction. According to Frank Hochuli, official certifications for fire behavior, static load-bearing capacity and for thermal insulation have already been issued.

What would be the effect of the new insulation web in an entire window, including glass panes, aluminum profiles, seals and all the other components and details? Compared with today’s high-end designs, Hochuli estimates that the thermal insulation in a new office building, for example, could be improved by up to twenty percent. And because the web with its “ dovetail” as a mounting connection is compatible with all common systems, existing solutions can be upgraded relatively easily – for example, for the rather high requirements according to passive house standards. “It takes a lot of effort to do that with alumi- nium profiles these days,” he says, “our system is so well adapted that it makes it easier.”

More environmentally friendly with little effort

Further information on the topic is available at: https://www.empa.ch/web/1304
CONCRETE CONSTRUCTION — THE LIGHTWEIGHT WAY

At the beginning of October, the latest unit was opened in the NEST research and innovation building — Hilo. Hilo is an example of how attractive architecture can be when combining emission- and resource-saving construction and operation. The unit combines innovative design and construction methods for concrete structures with integrated and adaptive building technologies. The two-story module was developed and realized by two research groups at ETH Zurich in close cooperation with numerous partners from industry.

Text: Stephan Kälin

In the latest NEST unit Hilo, building principles from the Middle Ages meet construction methods of the future: The two-story building module with the telltale double-curved concrete roof was planned and built using state-of-the-art design and fabrication methods. However, the ETH Zurich researchers were inspired not least by the ancient cathedral builders who knew a thing or two about how to create self-supporting structures.

Hilo is an office environment that will soon be operational. Its name stands for “High Performance – Low Emissions”: The unit is testing how the construction and operation of buildings can be designed to be as energy- and resource-efficient as possible — while at the same time ensuring an attractive architecture and a high level of comfort for the building’s users.

NEW CONCEPTS TURNED INTO REALITY

To realize Hilo — now the eighth module in NEST — the two ETH research groups led by Philippe Block, Professor of Architecture and Structures, and Arno Schütter, Professor of Architecture, worked in close cooperation with numerous partners from industry.
and Building Systems, joined forces. In several years of research, they developed groundbreaking new concepts and technologies, built prototypes in close cooperation with industrial partners and further developed their ideas before these innovations were finally implemented for the first time in a real building project – in HiLo.

RESOURCE-EFFICIENT CONCRETE STRUCTURES

The double-curved roof is particularly striking, gaining its stability primarily from its geometry. It consists of two concrete layers connected by a network of concrete ribs and steel anchors. It was built using flexible formwork consisting of a tensioned cable net and a membrane, onto which the concrete was sprayed. This construction method can do with much less concrete and formwork material.

The researchers also set themselves the goal of using as little material as possible for the floors in the two-story unit. HiLo’s lightweight floor design saves more than 70% of material compared to conventional concrete floors. This is achieved by the floor’s thin, funicular structure. Digital manufacturing methods make it possible to integrate ventilation, cooling and low-temperature heating into the rib structure, thus saving even more material (and volume).

SELF-LEARNING BUILDING TECHNOLOGIES

With regard to the integration of building technologies, the façade is also becoming increasingly important. An adaptive solar façade developed by Arno Schlüter’s group is implemented in HiLo. It consists of 30 photovoltaic modules that can align themselves with the sun. The flexible modules can also be used to control the incidence of sunlight into the room in order to provide passive heating or – on the contrary, to increase shading and thus reduce the need for cooling.

The adaptive solar façade is part of a series of innovative building technology components for the efficient regulation of the indoor climate. During operation, the researchers will be constantly optimizing the interaction of the individual technologies with the unit’s users using machine learning to investigate how comfortable indoor conditions can be achieved with as little energy and emissions as possible.

Further information on the topic is available at: www.empa.ch/web/nest/hilo

DESTRUCTION AND BREAKTHROUGH

The new NEST unit Sprint sets standards for circular construction: In just ten months, flexible, COVID-19-compliant office spaces were built using mostly reused materials and components. Sprint demonstrates: The “stockpile” of reusable materials and the re-use potential in the construction industry is enormous – you just have to use it.

Text: Annina Schneider

AIRY AND LIGHT

The self-supporting curved roof was created by spraying concrete onto a stained membrane.

FURTHER INFORMATION

Further information on the topic is available at:
www.empa.ch/web/nest/hilo

PHOTO CREDITS

Photo: Roman Keller

ARTICLE CREDITS

Text: Annina Schneider

FURTHER INFORMATION

Further information on the topic is available at:
www.empa.ch/web/nest/hilo
„DESIGN FOR DISASSEMBLY”
The design for disassembly approach takes dismantling into account right from the start, and the construction method facilitates future modifications and disassembly for the recovery of systems, components and materials, thus ensuring that, at the end of their regular life span, buildings can be transferred to another use cycle – a second life, if you wish – as efficiently as possible.

URGENT THAN EVER
Urgent than ever and forms the basis for achieving our CO₂ targets,“ emphasizes Ernico Marchesi, NEST innovation and project manager. “With the Sprint unit, we have therefore set ourselves the goal of finding solutions that are as universally applicable as possible and thus simplify the reuse of building materials.”

RETHINKING PLANNING, EXECUTION AND ECONOMICS
Building with reused materials is an iterative process, in which the question of available materials runs through the entire construction process. In order for such a project to be implemented in the shortest possible time, it requires, among other things, a rethinking of planning and execution, as well as a flexible schedule. “The time factor is a big challenge in reuse, as the reused material must be found and also be available exactly when needed. Contrary to our initial concerns about the tight schedule, though, we were able to find the re-use materials even faster than new materials. This is mainly due to the current scarcity of resources – but also shows that re-use has no impact on construction time,” explains Kerstin Müller, architect and member of the management team at baubüro in situ.

The carpet partition for Sprint, for example, was developed by Jonas Schafer, component hunter at baubüro in situ. It can be completely dismantled after use. With several measurements, the researchers investigated how the carpet tiles must be dismantled if necessary. The partition walls between the offices are made of old books, scrap bricks, others from old books, and still others from old carpet,” says Oliver Seidel, architect and member of the management team at baubüro in situ.

With several measurements, the researchers investigated how the carpet tiles must be dismantled if necessary. The partition walls between the offices are made of old books, scrap bricks, others from old books, and still others from old carpet,” says Oliver Seidel, architect and member of the management team at baubüro in situ.

EXPLOITING OPPORTUNITIES AND ACCEPTING LIMITS
However, Sprint shows that reuse is not per se cheaper in today’s market situation. Nevertheless, Oliver Seidel is convinced: “As soon as a competitive market with reused materials and components has established itself, cost advantages will also accrue for reuse. Moreover, I believe that there is a need for CO₂ taxes, for example, which would increase the prize of new materials and relieve the costs for used materials, so that their ecological benefit can be quantified.”

Reuse also offers new opportunities. For example, certain reused materials such as natural stone or automatic fire protection doors suddenly can become affordable, as opposed to the same components, brand-new. What’s more, the materials can be evaluated in terms of the CO₂ savings they enable.

In the case of technical components such as pumps or valves, however, the question arises as to whether reuse is worthwhile in terms of warranty and service life. It is quite possible that it makes more sense to procure these components anew. Verifying the service life of such engineered components is feasible, but time-consuming and costly. “The challenge in building with reused materials is to strike a balance between what is technically feasible and what makes sense,” says Maike Streitmann, BIM CAD department manager at Bouygues Énergies & Services.

BEST SOUND INSULATION FROM OLD CARPETS
Empa researchers tested the airborne sound insulation of the carpet partition specially designed for Sprint in the acoustics lab. For this purpose, the partition wall was set up in an adapter between two test rooms and the airborne sound transmission was measured. The weighted sound reduction index (Ra) was calculated from the frequency-dependent measurement data.

With several measurements, the researchers investigated how the carpet tiles must be dismantled if necessary. The partition walls between the offices are made of old books, scrap bricks, others from old books, and still others from old carpet,” says Oliver Seidel, architect and member of the management team at baubüro in situ.

EXPLOITING OPPORTUNITIES AND ACCEPTING LIMITS
However, Sprint shows that reuse is not per se cheaper in today’s market situation. Nevertheless, Oliver Seidel is convinced: “As soon as a competitive market

“CO₂ tax is needed that makes new materials more expensive and relieves the burden on used materials.”

Further information on the topic is available at www.empa.ch/verbessersprint. [FOCUS: BUILDING SMARTER] [MATERIAL CYCLE]
HEAT STORAGE IN THE DEEP

In Dübendorf, Empa is currently building a new, future-oriented research campus, co-operate, where groundbreaking research is conducted – and which is itself an object of research. This is because an experimental, seasonal energy storage facility is being built under the site, which will supply energy not only to the new buildings but to the entire Empa campus. In summer, for example, the waste heat from ventilation systems and laboratory equipment will be stored to be used in winter for heating or for the production of domestic hot water.

The aim is to either use around 90% of waste heat directly or to store it temporarily in the ground storage facility. In this way, Empa aims to reduce the CO₂ emissions of its buildings to a minimum and thus make a huge step towards a sustainable energy future.

Empa will be able to use the heat storage facility for research purposes for a period of ten years. The heat reservoir – a field of geothermal probes with a temperature gradient – comprises 144 probes extending up to 100 meters deep into the ground. At this depth, the storage unit works particularly effectively, losing only a small proportion of the stored heat to the environment. In the center of the geothermal probe field, the maximum temperatures can reach 50°C, at the edge the values are around 10°C. A tube system makes it possible to control each tube of the geothermal probe individually or to control defined areas and thus achieve the optimum mix between temperature, efficiency and energy storage.

Although such an earth storage system is very effective, it is also sluggish due to its large mass. The Empa researchers assume that the final operating temperature will be reached after about three to four years.
Scientists are visionaries. Sometimes their ideas go much further than an industrial partner is willing to go. The Empa Zukunftsfonds aims at supporting such visionary projects, where, despite high risks — or precisely because of them — breakthrough successes are to be expected. The latest example is a research project on prestressed high-performance concrete, which can now be started thanks to funding from the Ernst Göhner Foundation.

The production of concrete contributes around nine percent of global CO₂ emissions. If we want to combat climate change, we therefore need new types of concrete that last longer, produce fewer greenhouse gases and are so stable that it is possible to build slimmer — i.e. more material-efficient — structures. Empa researchers came up with an idea: Could a self-prestressing concrete be the solution?

Researchers are already experimenting with reinforced concrete elements that are prestressed by heat rather than hydraulically. Moslem Shahverdi from Empa’s Structural Engineering lab would like to go one step further: Small pieces of wire, just two to three centimeters long, are distributed in the concrete. If these wires, which are made of a special alloy known as shape memory alloys (SMA), are heated, they contract. This could produce concrete that prestresses itself in all spatial directions at the push of a button, as it were. And the material would be much stronger and more durable than conventional reinforced concrete we have been using for 140 years.

 Researchers from two other Empa labs are supporting Shahverdi: Experts from the Concrete and Asphalt lab are developing concrete mixtures with a lower carbon footprint. And colleagues from the Mechanical Systems Engineering lab, who specialize in calculating the strength of small and large building components, can suggest particularly promising experimental setups to Shahverdi using so-called finite element simulations. This significantly reduces the number of actual experiments and helps researchers reach their goals faster.

THE COURAGE TO TAKE RISKS – ALSO ON THE PART OF SUPPORTERS

“It’s a classic high-risk, high-gain project,” says Masoud Motavalli, who heads the Structural Engineering lab. “The risk of failure is high, but there’s also a lot to gain.” Motavalli has repeatedly approached funding agencies and industrial partners with this idea since 2008, for a long time without success. Now the Empa Zukunftsfonds has succeeded in securing funding from the Ernst Göhner Foundation. This means that the ambitious project can finally get off the ground. “We are very happy and grateful that, thanks to this generous and courageous start-up financing from the Ernst Göhner Foundation, we can now set our sights on a major goal: protecting the climate with the help of intelligent building materials of the future,” says Gabriele Dobenecker from Empa’s fundraising team. Support from foundations, but also private donations to the Empa Zukunftsfonds, would make such visionary projects possible in the first place and are therefore of great importance to Empa.
AN EYE FOR THE SMALLEST THINGS

As head of Empa’s Electron Microscopy Center, Rolf Erni has to balance many tasks: negotiating industrial contracts, promoting young scientists, teaching, supporting researchers at other Empa labs. And fascinating fundamental research, for which he is now being honored as one of the very few Distinguished Senior Researchers at Empa.

Text: Norbert Raabe

If you google what Rolf Erni actually does, you have to be prepared for polysyllabic words. “We employ atomic-resolution imaging, mostly in STEM mode, combined with local electron energy-loss spectroscopy (EELS), energy-dispersive X-ray (EDX) spectroscopy, as well as off-axis electron holography” – food for thought from the Electron Microscopy Center’s website, at which even trained researchers are likely to frown.

“This is not rocket science,” Rolf Erni likes to say then, as he did recently at a talk about his work – a reassuring understatement that probably stems from his research stint in the US. In other words, this is not highly sophisticated research for a select few, nor is it an impossibility for the normally gifted. Instead, it is the everyday work of “microscopists,” as Erni calls the guild, to which he has belonged for about 20 years – with curiosity, diligence, and highly cited publications in journals and books. In short: with a lot of success.

Quite unplanned, is how Erni describes his career. After receiving his PhD in materials science from ETH Zurich, Erni initially wanted to go straight into industry – but then “drifted off,” as he says. First, he spent a postdoc year at the National Center for Electron Microscopy in California; then, in 2004, he joined FEI, a leading manufacturer of electron microscopes. His job was to assist in the development of a new type of instrument, including its introduction to the market.

This microscope was to be “super-stable” and – just like optical devices – reduce even minimal “shakes” to enable a higher resolution. This also required solutions for inconspicuous details. For instance, the ring-shaped electromagnetic lenses that focus the electron beam – corresponding to the light beam of an optical microscope – contain a copper wire that heats up under continuous current. “These have to be cooled with water,” Erni explains, “and just the vibrations caused by water running through the instrument could have been critical for the instrument’s stability.”

SUCCESS? STAYING ON THE BALL
So he got to know his tool over the years – inside and out – and experienced the rapid development over two decades as an insider: from aberration corrections that eliminated “blurring” caused by excessively deflected electrons to the first CCD cameras in the 1990s. As in photography, they replaced films that had recorded electrons after they had penetrated the ultra-thin sample. And from advancing to atomic resolution of less than a tenth of a nanometer to new detectors that directly capture single electrons.

“There’s always something new”, says Rolf Erni, “so it’s really true that if you don’t keep up, you rust.” And these small and big steps paved the way for today’s projects like “Cluster”, supported by the EU’s Horizon2020 framework program – with a fascinating question: How is solid matter formed? Or more precisely, how do the first “nuclei” of solids like crystals form?
A blind spot in research – and a perfect opportunity for the Empa team. “If you understood these processes, you might be able to control them,” the researcher says, enthused. “And then it might also be possible to grow materials with favorable properties in a targeted manner. Or even those that don’t occur with favorable properties in a targeted way, of course, he adds. And it is still a long time at all.” There is still a long way to go, of course, he adds. And it leads over... fundamental research.

ONE WHO EXPLAINS WELL

The team took its first steps in the lab with platinum atoms, because heavy metals appear more high-contrast in the electron microscope, i.e., they are easy to “see”. How would Erni explain this to his eight-year-old son, who has already visited the lab with his class? “We put platinum atoms on a bed of carbon, and then we observe: What happens to them when you heat them up or bombard them with electrons?”

He does so by means of STEM (scanning transmission electron microscopy), that is, by scanning the beam over the platinum samples – at up to 150 frames per second, so that every molecular movement is captured and no phase is missed. “It’s actually not that complicated; it’s just no one has done it before,” says Erni. “And no one has dared to do this superfast scanning.”

The team has assembled their individual recordings into short video sequences. They show how different platinum structures form: ordered clusters of between six and 25 atoms – often including a very densely packed structure that platinum also adopts in its solid state. In the next step, the experts tried it in a more complex environment of a liquid, where similar phenomena could be observed: Atoms formed in what the experts call a “quasi-molten, crystalline state.”

How would Rolf Erni explain this observation to his son? That matter in this state “wobbles” in different forms? “Yes, exactly,” he nods – and quickly comes up with a more precise image. “Or like deforming a bunch of magnetic beads in your hand.”

In the process, highly ordered structures emerge from time to time.

DIVERSITY AS A RESEARCHER’S VIRTUE

Pondering over such fundamentals, signing industrial contracts, training dozens of Empa researchers from other labs so they can use the electron microscopes for their own research: Being a researcher and a service provider at the same time – isn’t that too much of a good thing? No, says Erni; on the contrary, he considers diverse insights highly valuable for his team, which he started building up in 2009 – at the time a key incentive to join Empa.

“Like deforming a bunch of magnetic beads in your hand.”

“www.empa.ch/web/s299
Further information on the topic is available at: www.empa.ch/web/s299

ROLF ERNI

CAREER: After graduation, postdoc at the National Center for Electron Microscopy, California, then as an expert at the manufacturer FEI in Eindhoven. As researcher at the University of Antwerp and again in California. Since 2009, head of the Center for Electron Microscopy at Empa.

SCIENCE: Training in materials science at ETH Zurich, diverse research in electron microscopy, publication of technical papers and books, lectureships at ETH Zurich, member of technical committees.

He does so by means of STEM (scanning transmission electron microscopy), that is, by scanning the beam over the platinum samples – at up to 150 frames per second, so that every molecular movement is captured and no phase is missed. “It’s actually not that complicated; it’s just no one has done it before,” says Erni. “And no one has dared to do this superfast scanning.”

The team has assembled their individual recordings into short video sequences. They show how different platinum structures form: ordered clusters of between six and 25 atoms – often including a very densely packed structure that platinum also adopts in its solid state. In the next step, the experts tried it in a more complex environment of a liquid, where similar phenomena could be observed: Atoms formed in what the experts call a “quasi-molten, crystalline state.”

How would Rolf Erni explain this observation to his son? That matter in this state “wobbles” in different forms? “Yes, exactly,” he nods – and quickly comes up with a more precise image. “Or like deforming a bunch of magnetic beads in your hand.”

In the process, highly ordered structures emerge from time to time.

DIVERSITY AS A RESEARCHER’S VIRTUE

Pondering over such fundamentals, signing industrial contracts, training dozens of Empa researchers from other labs so they can use the electron microscopes for their own research: Being a researcher and a service provider at the same time – isn’t that too much of a good thing? No, says Erni; on the contrary, he considers diverse insights highly valuable for his team, which he started building up in 2009 – at the time a key incentive to join Empa.

“Like deforming a bunch of magnetic beads in your hand.”

“Like deforming a bunch of magnetic beads in your hand.”

The center started with 2.5 full-time positions, today it has around ten. Whether for high-performance batteries, novel alloys or CO₂-neutral cements of the future, the need for microscopists’ expertise will continue to grow – and in discussions among experts about future service centers, Rolf Erni also advocates independent research. Of course, it’s important to host and equip these centers so that people can have their measurements taken, he says – but it’s equally important to be able to try out something new, he says, “and to have the freedom not to have to charge for every hour the microscope is running.”

In electron microscopy, the tool itself, with all its opportunities and pitfalls, is also a research object. Tinkering with new procedures is an inseparable part of it – and talented young scientists with creativity and the perfectionism it takes to succeed are as valuable as in any other scientific field. “In the end, you have extremely well-educated folks in your team – and all they do is service?” says Rolf Erni. “That can’t be it.”

ELECTRON MICROSCOPY AT EMPA

Four devices are currently in use at Empa. Firstly, there are two scanning electron microscopes, which scan the object under investigation with an electron beam; the interaction of the electrons with the sample is processed into an image. These instruments are primarily used for the analysis of materials. The two transmission electron microscopes work on a different basic principle. The electrons penetrate the wafer-thin samples, as if one were shining through a foil, and produce an image underneath – depending on the method, up to atomic resolution. These devices are used primarily in research. In addition to the EU-funded Cluster project on the formation and growth of crystals, which is significant for catalysts, for example, the Empa team is also working on complex oxides, which play an important role in technologies such as novel electronic components and data storage media.
POISON SOURCE IN THE IDYLL

Sediments in the Spöl, a small river in the very south of the canton Graubünden, are contaminated with PCBs. The chemicals originate from a 50-year-old anti-corrosion coating of a hydroelectric power plant in an upstream dam; they are transported and distributed with the waters of the Spöl – all the way to the Black Sea. Now the river has to be remediated. What is disputed, though, is the extent to which this must be done – and who will pay for it. Analyses by Empa scientists play a central role in this. They show just how much PCB is hidden in which areas of the riverbed.

Text: Rainer Klose

The eagle owl’s entrails to Empa. “The bird was emaciated to 1.3 kilograms, less than half its normal weight, as later examination revealed. That the bird was broken, and the eagle owl was emaciated to 1.3 kilograms, less than half its normal weight, as later examination revealed. That the bird was found at all, on the other hand, was shere luck. Normally, dead animals in the wild are carried off and eaten within hours by foxes or birds of prey. Now the ball was rolling. The carcass was examined at the Center for Fish and Aquatic Technologies lab. But when Zennegg examined the first samples in the mass spectrometer, he was quite surprised. “The instrument showed concentrations that I would not have thought possible. The load of particularly toxic polychlorinated biphenyls (PCBs) in this bird was 20 micrograms per kilogram of body fat – that’s thousands of times above normal levels for wild animals.” Zennegg had to dilute the samples and run them through his instrument one more time to determine the concentration correctly.

POLUTANTS FROM A POWER PLANT

The PCB concentrations in the eagle owl from the national park were not entirely unexpected, however. The Spöl, where the bird was found, draws its water from the “Lago di Livigno”. The lake is dammed by the “Punt da Gall” dam. And that’s where the problem lies: When the dam was built in the late 1960s, anti-corrosion paint containing PCBs was used, which has since been slowly worn away and contaminates the water at the Spöl. Here again, luck and misfortune lie close together: In 1970, the dam including the power plant was put into operation. Only two years later, in 1972, Switzerland banned PCB-containing substances in “open systems”. But by then, the dam was already finished – and, to a certain extent, brand new. For 50 years, the dam water carried the pollutant slowly downstream and deposited it in sandbanks and floodplains. In some places, PCB pollution reaches as deep as half a meter into the sediment. It is possible that a first, larger wave of PCBs was distributed in the sediments as early as 2013 during a mud flood in the Spöl.

A second incident occurred in 2016: A remediation company stored waste from sandblasting work in the dam tail, which was blown away by a storm and carried into the Spöl. The owner of the dam, the power plant company Engadiner Kraftwerke AG (EKW), reported this accident to the environmental authority. Since then, Empa has been monitoring the case. Markus Zennegg analyzes for instance fish and has developed special, highly sensitive passive samplers that can measure the PCB content in the water of the reservoir. Since 2017, the consumption of fish from the Spöl has been banned. Fish in the Swiss National Park exceed the PCB level permitted for food by a factor of four.
been rehabilitated in a pilot project in 2016. “They filtered out the fine sand with grain sizes of less than 3 millimeters, burned it out in a gravel plant and then reinstalled it in the basin,” explains Ruedi Haller, director of the Swiss National Park. “This method successfully removes about 90 percent of the PCB contamination.”

The question remains how many kilometers of the Spöl will have to be remediated in this way. In February 2021, the environmental authority of the canton of Graubünden ordered the remediation of the upper reaches of the Spöl over a length of 2.9 kilometers. The National Park Authority, on the other hand, is demanding remediation of the entire river course over 5.8 kilometers (see info box). Further downstream, the PCB contamination is no longer as serious as in the upper reaches, but still clearly too high for a national park.

National Park Director Haller, in calling for total cleanup, is thinking not only about the water in the rivers, but specifically about wildlife that accumulate the toxin in their bodies. “If animals die, their territories are occupied from other areas, the population is thinning out, and the Spöl valley acts as a population sink. The poisoned Spöl can thus have far-reaching effects if migrating animals carry the PCB over wide areas.” But that, he said, is exactly the opposite of what a national park is supposed to be by law: a place where rare species can find an intact habitat and positively impact other populations outside the national park.

LEGAL SITUATION UNCLEAR
A legal dispute has arisen between the power plant company EKW, the Swiss National Park and the environmental office of the canton of Graubünden. EKW had already offered to finance the remediation in advance and settle the dispute over the costs later. Many things are unclear, however: Will the remediation company have to pay for the 2016 accident? Will the case be treated as an industrial contaminated site or under water protection laws? Michael Roth, the director of EKW, sees it this way: “The Spöl case is hardly comparable to any other known environmental pollution incident. Accordingly, authorities cannot refer to other cases, which has a negative impact on legal certainty. It will be inevitable that one or the other question will have to be clarified by the courts.”

A VISIT IS WORTHWHILE – AS SOON AS POSSIBLE
Empa scientists will continue to monitor the stress on fish and wildlife in the national park with their chemical analyses. A visit to the river is worthwhile sooner rather than later. As soon as the remediation begins, the Spöl will turn into a construction site for two to three years, says National Park Director Haller. “We will stay in the riverbed itself as much as possible with excavators and dumpers to destroy as little of the surrounding area as possible. A mobile gravel plant will travel with the site, filtering out the fine sand from the polluted sediments and burning it out on site so we can put it right back in.”

Eventually, the riverbed will be purposefully flooded several times with water from the reservoir to redistribute the clean sand and erase the traces of construction. “A few years later, nature will have reclaimed the landscape – without PCB pollution,” says Ruedi Haller. “Then we can pass the national park on to the next generations with a clear conscience.”

Further information on the topic is available at: www.empa.ch/web/s502
FUELING UP WITH HYDROGEN – AT OLMA

With all the flooding stations at the kiosk each fall, with an increasing expansion of photovoltaic systems, there will be a surplus of renewable energy in summer that can be converted into hydrogen – a fuel that is particularly suitable for trucks and other heavy vehicles. Together with partners, Empa will be demonstrating how hydrogen can be produced and refueled at a closed station at the OLMA in St. Gallen from 7 to 17 October. Besides information worth knowing about suitable fuels and answers to frequent questions, visitors will also have the opportunity to try their hand at it themselves – with the help of a fueling station and the Hyundai KONA fuel cell car. In addition, an e-bike from Lcade that runs on H2 will also be on display.

www.empa.ch/web/move

TINY GLOBE MADE OF CERAMIC

At the Swiss NanoConvention last June, not only posters and a startup company received awards, but also pictures: a tribute to successful presentations of nano research. The jury awarded the second place to Empa researcher Evgeniia Gilshtein — for a tiny globe one-tenth of a millimeter in diameter. The sintered sphere is initially comprised of micron-sized alumina particles and nanometer-sized iron oxide particles mixed in water. The result inspired Gilshtein to use image processing to turn it into a blue planet – fitting for 2021, which the UN has declared the “International Year of Peace and Trust”. First place went to Filippos Kapsalidis from ETH Zurich.

www.empa.ch/web/s207

34 ON THE ROAD

At the Swiss NanoConvention last June, not only posters and a startup company received awards, but also pictures: a tribute to successful presentations of nano research. The jury awarded the second place to Empa researcher Evgeniia Gilshtein — for a tiny globe one-tenth of a millimeter in diameter. The sintered sphere is initially comprised of micron-sized alumina particles and nanometer-sized iron oxide particles mixed in water. The result inspired Gilshtein to use image processing to turn it into a blue planet – fitting for 2021, which the UN has declared the “International Year of Peace and Trust”. First place went to Filippos Kapsalidis from ETH Zurich.

www.empa.ch/web/s207
GIFT SUBSCRIPTION FOR:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms</td>
<td>Mr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First name, Name

Company, Institute

Street

PO Box

Zip code, city

Country

Email

Recommendation by

All data will be treated confidentially and not passed on to third parties.

Yes, I’d like to subscribe to Empa Quarterly free of charge.

English

German

French

My address has changed:

Subscription No.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms</td>
<td>Mr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First name, Name

Company, Institute

Street

PO Box

Zip code, city

Country

Email

All data will be treated confidentially and not passed on to third parties.