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BACKGROUND: Pregnancy is a sensitive condition during which adverse environmental exposures should be monitored thoroughly and minimized
whenever possible. In particular, the hormone balance during gestation is delicate, and disturbance may cause acute or chronic long-term health
effects. A potential endocrine disruption may be provoked by in utero exposure to xenoestrogens mimicking endogenous estrogens. The mycoestrogen
zearalenone (ZEN), a toxic fungal secondary metabolite and mycotoxin found frequently in food and feed, constitutes a prominent example.
OBJECTIVES: We performed a comprehensive assessment of the transfer as well as phase I and phase II metabolism of ZEN at the human placental
barrier.
METHODS: Human placentas were perfused with 1 lM (318 lg=L) ZEN for 6 h. Samples from the maternal and fetal compartment, placental tis-
sue, and fetal plasma were analyzed by a highly sensitive UHPLC-MS/MS assay to detect ZEN as well as nine key metabolites (a-zearalenol,
b-zearalenol, zearalanone, a-zearalanol, b-zearalanol, ZEN-14-glucuronide, a-zearalenol-14-glucuronide, b-zearalenol-14-glucuronide, ZEN-14-
sulfate).
RESULTS: The model revealed a fast maternofetal transfer of ZEN across the human placental barrier. We also unraveled phase I and phase II metabo-
lism of the parent toxin ZEN into the approximately 70-times more estrogenic a-zearalenol and the less active ZEN-14-sulfate conjugate, which are
effectively released into the maternal and fetal circulation in considerable amounts.
CONCLUSIONS: Our findings suggest that exposure to ZEN (such as through consumption of ZEN-contaminated cereal-based products) during preg-
nancy may result in in utero exposure of the fetus, not only to ZEN but also some of its highly estrogenically active metabolites. In the light of the
known affinity of ZEN and potentially co-occurring xenoestrogens to the estrogen receptor, and our results demonstrating placental transfer of ZEN
and its metabolites in an ex vivo model, we recommend further research and more comprehensive assessment of gestational exposures in women.
https://doi.org/10.1289/EHP4860

Introduction
Zearalenone (ZEN) is a fungal toxin (mycotoxin) produced by
Fusarium species and is regularly found in cereal-based food and
feed in various countries (Maragos 2010; EFSA 2011; Mally et al.
2016). Other sources, such as legume-based food and vegetable
oils, were also reported (Schollenberger et al. 2007; Maragos
2010; EFSA 2011). Because this mycotoxin possesses potent es-
trogenic activity, it is often referred to as xeno- or mycoestrogen
(Bennett and Klich 2003; Kowalska et al. 2016; Warth et al.
2018). Humans are frequently exposed to low doses, either
directly by ingestion of contaminated food or indirectly by the
consumption of livestock that were fed with contaminated chow
(Kowalska et al. 2016).

The most prevalent phase I metabolites are a- and b-zearalenol
(a- and b-ZEL) and a- and b-zearalanol (a- and b-ZAL) (Miles
et al. 1996; Pfeiffer et al. 2011), whereas zearalanone (ZAN) is a
metabolite of a-ZAL (Migdalof et al. 1983). The favorably formed
metabolite is highly dependent on the species [reviewed in Zinedine

et al. (2007)]. Detoxification occurs via phase II metabolism by sul-
fation and glucuronidation (Migdalof et al. 1983; Miles et al. 1996;
Pfeiffer et al. 2011).

The human metabolism of ZEN has been characterized in cell
models (Pfeiffer et al. 2010, 2011) as well as in vivo in human
intervention studies (Mirocha et al. 1981; Warth et al. 2013). It is
mainly metabolized via phase I metabolism to a-ZEL and to a
minor extent to b-ZEL and is thereafter glucuronidated. ZEL
metabolites were also shown in vitro using Caco-2 cells to conju-
gate to sulfate metabolites (Pfeiffer et al. 2011). In line with this,
Huuskonen et al. (2015) unraveled human placental phase I me-
tabolism of ZEN to a-ZEL and to a minor extent to b-ZEL in
chorion carcinoma JEG-3 cells and human term placental subcel-
lular fractions.

ZEN is often referred to as an endocrine-disrupting chemical
(EDC) (Kowalska et al. 2016). According to the European
Commission, EDCs are “substances that alter the functions of the
hormonal system and consequently cause adverse effects” (EC
2018). ZEN and several of its metabolites can bind to estrogen
receptors and resemble, therefore, with different potency, the es-
trogenic properties of endogenous estrogens. a-ZEL was demon-
strated to be the most potent structure, being about 70 times more
potent than the parent toxin ZEN (Frizzell et al. 2011), followed
by a-ZAL and ZEN (Arukwe et al. 1999; Malekinejad et al.
2005; Frizzell et al. 2011; Tatay et al. 2017). Phase II metabolism
(glucuronidation and sulfation) reduced estrogenicity in cell mod-
els (Jard et al. 2010; Frizzell et al. 2015).

Environmental exposure to molecules mimicking endogenous
estrogens, so-called xenoestrogens, may result in various adverse
effects in different human organs, including the reproductive tract
and the nervous system (Singleton and Khan 2003). Such adverse
effects have been reported frequently in animal studies [reviewed
in Xu et al. (2017)] but human data are difficult to generate due
to the complexity of the endocrine system and the diversity of
xenoestrogens, which usually appear at low doses in various mix-
tures. Moreover, there is growing evidence that exposure to
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xenoestrogens at early developmental stages can be related to
chronic diseases later in life, such as breast cancer and the devel-
opment of other tumors (Palmlund 1996; Fernandez and Russo
2010; Fucic et al. 2012).

Consequently, the investigation of the in utero and early life
exposure to xenoestrogens is of high priority. Different approaches
have been developed to study the permeability of the human pla-
cental barrier [reviewed in Muoth et al. (2016)]. Among these, the
dually perfused ex vivo placental perfusion model provides highly
predictive, human-relevant data on the transfer and metabolism of
compounds due to the use of intact human placental tissue and
dynamic exposure conditions (Panigel et al. 1967; Hutson et al.
2011; Grafmüller et al. 2013; Mathiesen et al. 2014).

The unborn child is particularly responsive to endocrine dis-
ruption, and a perturbation of the fragile hormone balance may
lead to a maldevelopment of the reproductive system (Palmlund
1996; Saunders et al. 1997; Welshons et al. 1999; Delbès et al.
2006; Reed and Fenton 2013). It has been described that the xen-
oestrogens bisphenol A (BPA), 4-nonylphenol, and genistein can
cross the human placental barrier in ex vivo perfusion studies
(Balakrishnan et al. 2010a, 2010b, 2011). Moreover, the detec-
tion of estrogenic compounds, such as parabens in umbilical cord
plasma (Kolatorova et al. 2018) or nonylphenol and BPA in am-
niotic fluid (Shekhar et al. 2017) further supports that there is a
transfer of these chemicals across the placenta in vivo. Therefore,
an unborn child might be at immediate risk of chronic low-dose
exposure to a mixture of xenoestrogens. The combination of differ-
ent estrogenic compounds, even at very low levels, has been dem-
onstrated to potentially result in synergistic adverse effects in cell
models (Rajapakse et al. 2002; Vejdovszky et al. 2017).

To date, the ability of mycotoxins to cross the placental bar-
rier in the ex vivo placental perfusion model has been investigated
only for the carcinogenic aflatoxin B1 (Partanen et al. 2010), the
nephrotoxic ochratoxin A (Woo et al. 2012), and the type-B tri-
chothecene deoxynivalenol (Nielsen et al. 2011), which inhibits
protein synthesis. Although aflatoxin B1 and deoxynivalenol can
pass through the human placental barrier, ochratoxin A could not
in the described experiments. In a rat model, ZEN and its phase I
metabolite a-ZEL were shown to be transferred to the fetus
(Bernhoft et al. 2001) and cause adverse effects (Gao et al. 2017),
but human data is still lacking to date. In addition, ZEN conver-
sion to all of its potential metabolites has not yet been systemati-
cally investigated in an advanced human placenta model.
Verification of ZEN translocation and metabolism in a predictive
human placenta model is urgently needed, considering the signifi-
cant species-specific differences in placental development, struc-
ture, function, and pathology (Enders and Blankenship 1999;
Malassine et al. 2003; Schmidt et al. 2015). Important considera-
tions are that the mouse and rat placenta does not produce estro-
gens (aromatase-negative), and the level of circulating estrogens
is much lower than in human pregnancy, resulting in different
pharmacokinetics and metabolic profiles (Witorsch 2002; Al-
Bader 2006). Therefore, the primary aims of this study were to a)
determine the permeability of the human placental barrier in
respect to ZEN and b) to investigate the human placental metabo-
lism of ZEN that might lead to biotransformation products exhib-
iting enhanced estrogenic activity.

Material and Methods

Chemicals and Reagents
Liquid chromatography–mass spectrometry (LC-MS)-grade aceto-
nitrile (ACN) and methanol (MeOH) were obtained from Sigma-
Aldrich, and water (H2O, LC-MS grade) was purchased from
VWR International GmbH. Ammonium fluoride (LC-MS grade)

was obtained from Honeywell Fluka. ZEN, a-ZEL, b-ZEL,
a-ZAL, b-ZAL, and 13C18-ZEN were obtained from either
Romerlabs or Sigma-Aldrich, whereas ZEN-14-GlcA, a-ZEL-GlcA,
and b-ZEL-GlcA were synthesized at the Technical University of
Vienna and kindly provided by Dr. Mikula (Mikula et al. 2012,
2013). ZEN-14-Sulf was a kind gift from Prof. Berthiller from the
University of Natural Resources and Life Sciences, Vienna (Vendl
et al. 2010). Antipyrine was obtained from Sigma-Aldrich. All ref-
erence standards were dissolved in ACN. ZEN and its metabolites
were combined manually to a multianalyte calibration solution
(each analyte at a concentration of 10 mg=L). All single and com-
bined analytes were stored at −20�C. ZEN for transfusion experi-
ments was obtained from Toronto Research Chemicals (purity
98.9%).

Ex Vivo Placental Perfusion
In total, six placentas were obtained from uncomplicated pregnan-
cies after caesarean section from the Kantonsspital St. Gallen and
Hirslanden Klinik Stephanshorn St. Gallen with written informed
consent from the expecting mothers. The study was approved by
the local ethics committee (EKOS 10/078; PB-2018-00,069) and
performed according to the principles of the Declaration of
Helsinki. The recirculating dually perfused ex vivo placental perfu-
sion model was performed as previously described with some mod-
ifications (Figure 1) (Grafmüller et al. 2013; Grafmueller et al.
2015). Briefly, a fetal artery–vein pair of an intact cotyledon was
cannulated, and the placenta was placed into a perfusion chamber
with the maternal side up. To connect the maternal side, three blunt
cannulas were gently inserted in the intervillous space, and a venous
drain was introduced to return the fluid to the maternal circulation.
Perfusion was achieved with two peristaltic pumps at 4 mL=min
for fetal flow and 12 mL=min for maternal flow. Oxygenators were
applied to maintain gas compositions of 95% N2/5% CO2 at the fe-
tal side and 95% synthetic air/5% CO2 at the maternal side. All
components of the perfusion system were kept in perfusion cham-
ber at 37°C. To flush out the blood and allow recovery of the tissue
from the ischemic period after the delivery, the cotyledon was per-
fused for 20 min with perfusion medium. The perfusion medium
was M199 tissue culture medium, which was diluted with Earl’s
buffer (1:2) and further supplemented with glucose (1 g=L), bovine
serum albumin (BSA; 10 g=L), dextran 40 (10 g=L), sodium hepa-
rin [2,500 International Units ðIUÞ=L], amoxicillin (250 mg=L),
and sodium bicarbonate (2:2 g=L; medium and all supplements
were obtained from Sigma-Aldrich). After the recovery phase, the
medium was replaced by fresh medium in the presence or absence
of ZEN. In total, six placentas from six different women were per-
fused. Three placentas were perfused with perfusion medium with-
out addition of ZEN to obtain baseline data. In the other three
perfusions, ZEN was added to the maternal circulation at a final
concentration of 1 lM, corresponding to 318 lg=L. The concentra-
tion was chosen to be in a nontoxic range [nontoxic on human cho-
riocarcinoma cells (BeWo)] up to 10 lM (Prouillac et al. 2009,
2012) but high enough to enable quantitative measurements also of
minor biotransformation products. Concentrations of ZEN in mater-
nal blood during pregnancy are not reported to date to the best of
our knowledge. However, based on available exposure data and
current legislation [in the EU EC (2007); EFSA (2011)] we expect
chronic low-dose exposure to be frequent.

Criteria for a successful perfusion were: a) the pre-perfusion
of the tissue showed no leakage; b) the leakage (fetal to maternal)
was less than 4 mL=h during the translocation experiment; and c)
the pH remained constant during the experiment (7.2–7.4).
Moreover, the passive diffusion reference markers antipyrine and
creatinine were added to all perfusions (final concentration of
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100 mg=L in maternal reservoir) to ensure sufficient overlap
between maternal and fetal circulation.

Samples (5 mL) from the maternal and fetal circulations
(referred to as maternal and fetal perfusates) were collected at 0,
0.25, 0.5, 1, 2, 3, 4, 5, and 6 h of perfusion and analyzed immedi-
ately for pH, creatinine, glucose, and lactate using a blood gas ana-
lyzer (epoc® Blood Analysis system with BGEM test cards;
Epocal Inc.). One of the control perfusions (medium without addi-
tion of ZEN) showed a slight leakage after 5 h of perfusion and
was therefore stopped at that time point. Afterwards, supernatants
were stored at −80�C for further UHPLC-MS/MS analysis.
Placental tissue samples from the intervillous region were taken
before (from a nonperfused neighboring cotyledon) and after per-
fusion and stored at −80�C for UHPLC-MS/MS analysis. Fetal
plasma was isolated from umbilical vein blood by centrifugation
[2,000× g, 10 min, in S-Monovette with Li-Heparin (Sarstedt)]
and stored at −80�C for later UHPLC-MS/MS analysis.

Sample Preparation
A volume of 200 lL of maternal and fetal perfusates and fetal
plasma, respectively, was spiked with 10 lL of internal standard
(IS) solution (100 lg=L 13C18-ZEN), vortexed, mixed with

800 lL MeOH/ACN (1/1), and thereafter sonicated for 10 min in
an ice bath. To assist protein precipitation, the samples were stored
at −20�C for 1 h and subsequently centrifuged at 18,000× g at
4�C for 15 min. The supernatant was evaporated at 4�C with a
CentriVap Vacuum concentrator (Labconco) and resolved with
200 lL ACN=H2O (1/9). The samples were centrifuged for
5 min (18,000× g, 4�C), and the supernatant was transferred
into a glass vial containing an insert. All steps were performed
on ice.

Placental tissue samples were cut into pieces of approximately
500 mg. In addition, 20 times the volume ACN=MeOH=H2O (4/4/
2) was added as extraction solvent. Ceramic beads were added, and
homogenization was performed with a Fast Prep Homogenizer (MP
Biomedicals). Four cycles (4 m=s for 20 s; 120 s break) were con-
ducted. After 10 min of sonication, the samples were centrifuged at
4,000 × g at 4�C. 1,000 lL of supernatant was spiked with 10 lL
of IS solution (100 lg=L 13C18-ZEN), vortexed and put at −20�C
for one hour. After 15 min of centrifugation at 18,000 × g and 4�C,
the supernatant was evaporated at 4�C with a CentriVap Vacuum
concentrator and resolved in 200 lL ACN=H2O (1/9). The samples
were centrifuged for 5 min (18,000× g, 4�C) and the supernatant
transferred into a glass vial containing an insert. All steps were per-
formed on ice.
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Figure 1. Ex vivo dually perfused human placenta perfusion model. (A) Scheme of the perfusion system. (B) Photograph showing cannulation from the mater-
nal and fetal side, respectively. (C) Scheme with details of maternal and fetal side cannulation of an intact cotyledon and sampling sites (magenta). Fetal
plasma is isolated from the umbilical vein blood before perfusion. ZEN is introduced to the maternal reservoir at the start of perfusion. Maternal and fetal per-
fusates are sampled from the corresponding reservoirs at different time points during perfusion. Placental tissue (black quadrant) is taken from the intervillous
region of a perfused cotyledon at the end of perfusion. Note: BT, bubble trap; FA, fetal artery; FV, fetal vein; IVS, intervillous space (maternal blood space);
MA, maternal artery; MV, maternal vein; UA, umbilical artery; UV, umbilical vein.
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LC-MS/MSMeasurements
Measurements were performed utilizing a Dionex Ultimate 3000
UHPLC coupled to a TSQ Vantage triple quadrupole mass spec-
trometer (Thermo Scientific) as described in detail by Preindl
et al. (2019). In brief, an Acquity HSS T3 column (1:8 lm,
2:1× 100 mm) equipped with a VanGuard precolumn (1:8 lm;
Waters Corporation) served for chromatographic separation. As
mobile phases, water with 0:3mM ammonium fluoride as addi-
tive (A) and acetonitrile (B) were used at a flow rate of
0:4 mL=min. Aqueous ammonium fluoride solutions have to be
handled with care, because hydrogen fluoride may outgas. A
stock solution of 0:3 M was prepared and stored at 4�C. The final
concentration in the eluent was very low; however, contact with
acid (e.g., in the waste bottle) was prevented for safety reasons.
Separation was achieved by the following gradient: 0–1 min: 5%
B; rise to 18% B until min 1.8; rise to 35% B until min 4.2; rise to
48% B until min 13; rise to 90% B until min 14; flush with 98% B
from min 15.8 to min 17.6; re-equilibrate with 5% B from min
17.7 to min 20. The column compartment was operated at 40�C
and the sample tray cooled to 10�C. The multiple reaction moni-
toring (MRM) experiments were performed in negative electro-
spray ionization (ESI) mode, using fast polarity switching.
Electrospray settings were set as follows: spray voltage
−3,100 V, vaporizer temperature 340�C, sheath gas pressure
50 au, ion sweep gas pressure 2:5 au, aux gas pressure 30 au and
capillary temperature 315�C.

To account for matrix effects and potential retention time
deviations in the different analyzed matrices, matrix-matched ref-
erence standards were prepared by resolving evaporated blank
extractions of perfusion medium [pooled aliquots of the three
control perfusions without ZEN (min 0, 120, and end of perfu-
sion)], fetal plasma (pooled fetal plasma from six distinct experi-
ments) and placental tissue (pooled tissue from six distinct
placentas) with 200 lL of standard level solutions (nine-point
calibration, 0:05 lg=L to 500 lg=L in 1/9 ACN=H2O). ZEN was
quantified using the 13C18-ZEN IS. To determine extraction
recoveries, blank extractions of perfusion medium [pooled ali-
quots of the three control perfusions without ZEN (min 0, 120,
and end of perfusion)] and fetal plasma (pooled fetal plasma
from six distinct experiments) were spiked in triplicate at
15 lg=L before extraction and sample preparation. Placental tis-
sue (pooled tissue from six distinct placentas) was spiked in trip-
licate at a concentration of 15 lg=L post homogenization. For
control measurements of antipyrine, a separate reference standard
was dissolved in pure solvent at different concentrations for
external calibration purpose (10 to 100 mg=L in 1/9 ACN=H2O).

Data Processing and Statistics
Data evaluation and quantification was performed with the
Xcalibur and TraceFinder software packages (version 4.1,
Thermo Scientific). Limit of detection (LOD) and limit of quanti-
fication (LOQ) were estimated for each matrix in spiked blank
matrix samples by a signal-to-noise ratio of three and ten, respec-
tively. All results from medium-derived samples were corrected
by the calculated analyte-specific recovery values.

Data regarding ZEN and its metabolites represent mean±
standard deviation (SD) of three independent placentas, perfused
with medium containing ZEN. Perfusion data comparing mater-
nal and fetal perfusate concentrations were analyzed by unpaired
Student’s t-test. Differences were considered statistically signifi-
cant at p<0:05. The percentages of ZEN metabolized to a-ZEL
and ZEN-14-Sulf were calculated by the following formula:
100× ðM+F+ T + SÞ=M0, where M and F is the amount of the
metabolite (a-ZEL or ZEN-14-Sulf) in the maternal and fetal

circulation at the end of perfusion, T is the amount of metabolite
in the placental tissue after perfusion, S is the amount of metabo-
lites present in the samples being collected during perfusion, and
M0 is the amount of ZEN added to the maternal circulation at the
beginning of perfusion. The percentages of ZEN released into the
fetal or maternal circulation or present in placental tissue were
calculated similarly as described above (% maternal: 100 ×
ðM+ SÞ=M0; (% fetal: 100× ðF+ SÞ=M0; (% tissue: 100× T=M0).

Results

Analytical Performance
A highly sensitive and specific UHPLC-MS/MS multimethod for
ZEN and nine of its key metabolites (chemical structures are
depicted in Figure 2) was established for quantification. As demon-
strated in Figure 3 and S1, we were able to achieve baseline chro-
matographic separations and desirable peak shapes despite the high
structural similarity. MRM transitions and retention times of the
measured analytes are summarized in Table 1. Estimated LOD val-
ues in perfusion medium ranged from 0.05 to 1:50 lg=L, whereas
in fetal plasma and placental tissue they ranged from 0.05 to
5:0 lg=L and from 0.6 to 6:0 ng=g, respectively (Table 1).
Extraction recoveries as obtained from the spiking experiments
were above 82% for placental tissue and plasma samples and 74%
for the perfusion medium, respectively (Table S1).

ZEN and Metabolite Levels in Placental Tissue and Fetal
Plasma
To understand potential background levels of ZEN and its metab-
olites present in the placental tissue or introduced during the

Figure 2. Chemical structures of ZEN and its metabolites investigated in
this study.
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perfusion process, we determined their concentrations in three
control perfusion experiments (placentas perfused with perfusion
medium without addition of ZEN) from maternal and fetal per-
fusate as well as placental tissue samples taken before and after
6 h of perfusion (Table S1). In each experiment (all six per-
fused placentas), placental tissues and perfusates were assayed
for ZEN and nine metabolites before the experimental addition
of ZEN. In all these measurements, ZEN and the nine metabo-
lites were not detected. Moreover, these compounds were also
absent in fetal vein plasma from any of the six placentas
investigated.

Human Placental Metabolism of ZEN
The human placenta expresses a wealth of enzymatic machinery
responsible for both phase I and phase II reactions (Prouillac and
Lecoeur 2010). Therefore, we explored the biotransformation of
ZEN into previously described metabolites in the human ex vivo

placental perfusion model as well as the bi-directional release of
the metabolites into the maternal and fetal circulation.

After 6 h of perfusion with 318 lg=L ZEN, only the parent
compound ZEN and the metabolites a-ZEL and ZEN-14-Sulf
were detected in the placental tissue at concentrations of 205±
31 ng=g tissue, 13± 2 ng=g tissue, and 14± 7 ng=g tissue, respec-
tively. Although ZEN standard material of highest quality was
purchased (98.9% purity), our highly sensitive UHPLC-MS/MS
method revealed that this material contained trace amounts of the
metabolites ZAN and b-ZEL (each about 1% of the applied ZEN
concentration) (Table S2). Although placental tissue concentra-
tions of ZAN were below LOQ, a small amount of 4:6± 1:6 ng=g
tissue b-ZEL was detected after 6 h of perfusion with ZEN.
Release of the newly formed metabolites a-ZEL and ZEN-14-
Sulf into the maternal and fetal circulation was observed already
within the first 15 min of perfusion (Figure 4, Table S1). For
a-ZEL, a plateau was reached after 3 h of perfusion with approxi-
mately double the concentrations in the maternal in comparison with
the fetal compartment (4:8±0:6 lg=L and 2:8± 1:4 lg=L a-ZEL
at 6 h of perfusion, respectively) (Figure 4). In contrast, ZEN-14-Sulf
concentrations showed a linear increase to 14:9± 4:5 lg=L in the
maternal and 8:2± 3:5 lg=L in the fetal circulation at 6 h of perfu-
sion (Figure 4, Table S1). Overall, ∼4 and 8% respectively of the
introduced ZEN was metabolized to a-ZEL and ZEN-14-Sulf and
released into the maternal and fetal circulation at the end of the perfu-
sion studies, whereas no significant metabolism to ZAN, b-ZEL,
a=b-ZAL, ZEN-14-GlcA, or a=b-ZEL-14-GlcA was observed.

Human Placental Transfer of ZEN
To investigate if ZEN can cross the human placental barrier and
reach the fetal circulation, we applied the dually perfused ex vivo
placental perfusion model that is extensively used to assess the
transplacental transfer of compounds and delivers highly predic-
tive results (Hutson et al. 2011).

In all placental perfusion experiments (three control perfusions
without addition of ZEN and three perfusions with addition of
ZEN), two reference compounds with fast or slow passive diffu-
sion kinetics, namely antipyrine and creatinine, were added to
ensure sufficient overlap between the maternal and fetal circulation
and to normalize the translocation data. Antipyrine showed a rapid
translocation to the fetal circulation similar to those reported in
previous publications (Wick et al. 2010; Nielsen et al. 2011; Woo
et al. 2012; Grafmueller et al. 2015) (Figure 5). In contrast, trans-
placental transfer of creatinine was slower and did not reach an
equilibrium within 6 h of perfusion (Figure 5). Addition of ZEN
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Figure 3.Multiple reaction monitoring (MRM) chromatograms of refer-
ence standards spiked into blank medium. b-zearalenol-14-glucuronide
(b-ZEL-14-GlcA) m/z 495 ! 319:3 (1); a-zearalenol-14-glucuronide (a-ZEL-
14-GlcA) m/z 495:2 ! 319:3 (2); zearalenone-14-glucuronide (ZEN-14-GlcA)
m/z 493:2 ! 317:2 (3); zearalenone-14-sulfate (ZEN-14-Sulf) m/z 397:1 !
317:2 (4); b-zearalanol (b-ZAL) m/z 321:2 ! 277:2 (5); b-zearalenol
(b-ZEL) m/z 319:2 ! 275:2 (6); a-zearalanol (a-ZAL) m/z 321:2 ! 277:2
(7); a-zearalenol (a-ZEL) m/z 319:2 ! 275:2 (8); zearalanone (ZAN) m/z
319:2 ! 275:2 (9); zearalenone (ZEN) m/z 317 ! 175 (10); stated numbers
represent the intensity arbitrary units (a.u.).

Table 1. Chromatographic and mass spectrometric parameters of the assessed analytes.

Analyte
Retention time

(min)
Parent
ion

Ion
species

Quantifier
ion

Qualifier
ion

Ionization
mode

Placental tissue (ng/g) Fetal plasma (lg=L) Perfusion medium (lg=L)

LOD LOQ LOD LOQ LOD LOQ

b-ZEL-14-GlcA 3.82–4.03a 495 ½M-H�− 319.3 175 Negative 2 6 5 15 1 1.5
a-ZEL-14-GlcA 4.10–4.35a 495 ½M-H�− 319.3 175 Negative 6 6 5 5 0.5 1.5
ZEN-14-GlcA 4.39–4.64a 493.2 ½M-H�− 317.2 175.1 Negative 6 20 5 15 1.5 5
ZEN-14-Sulf 5.36–5.57a 397.1 ½M-H�− 317.2 175.1 Negative 2 6 0.15 0.5 0.15 0.5
b-ZAL 8.08 321.2 ½M-H�− 277.2 303.2 Negative 2 2 0.15 0.5 0.5 1.5
b-ZEL 8.32 319.2 ½M-H�− 275.2 160.1 Negative 2 2 0.5 1.5 0.5 1.5
a-ZAL 9.40 321.2 ½M-H�− 277.2 303.2 Negative 2 2 0.15 0.5 0.5 0.5
a-ZEL 9.74 319.2 ½M-H�− 275.2 160.1 Negative 2 6 0.5 1.5 0.5 1.5
ZAN 12.00 319.2 ½M-H�− 275.2 205.2 Negative 2 2 0.15 0.5 0.15 0.5
ZEN 12.18 317 ½M-H�− 175.0 131.0 Negative 0.6 2 0.05 0.15 0.05 0.15
13C18-ZEN (IS) 12.18 335 ½M-H�− 185.0 — Negative

Note: —, indicate data not available, Multiple reaction monitoring (MRM) transitions, retention times and limit of detections (LOD), limit of quantifications (LOQ) of tested matrices.
Zearalenone (ZEN), ZEN-14-glucuronide (ZEN-14-GlcA), ZEN-14-sulfate (ZEN-14-Sulf), a-=b-zearalenol (a-=b-ZEL); a-=b-ZEL-14-glucuronide (a-=b-ZEL-GlcA),
a-=b-zearalanol (a-=b-ZAL), zearalanone (ZAN); IS, Internal Standard.
aMinor deviations in different matrices.
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did not alter the transplacental transfer kinetics of creatinine but
slightly increased the transfer of antipyrine (Figure 5).

After addition of ZEN (318 lg=L) to the maternal circula-
tion, its levels rapidly decreased in the maternal compartment
and increased in the fetal compartment to a concentration of
53± 18:5 lg=L after 6 h of perfusion (Figure 6, Table S1).
Translocation of ZEN across the placental barrier was only slightly
slower than the reference compound antipyrine but substantially
faster than creatinine as indicated by the fetal/maternal (FM) ratios
(Figure 6). At the end of perfusion, 15:3± 3:8% of the initially
added ZEN was present in the fetal circulation, 30:8± 7% in the
maternal circulation, and 24:6±5:8% in the cotyledon. The rest of
ZEN was metabolized to a-ZEL and ZEN-14-Sulf, and usually a
small amount of the perfused substance will diffuse into the tissue
surrounding the perfused cotyledon (Frederiksen et al. 2010) or
bind to the perfusion system (Mose et al. 2008; Aengenheister et al.
2018).

Due to the above-mentioned minimal contamination of ZEN
with ZAN and b-ZEL, we could additionally obtain placental
transfer data of these two compounds. Transfer of ZAN and
b-ZEL across the placental barrier was observed, but due to the
low initial amount in the maternal circulation (∼ 3 lg=L), the
deviations of the individual measurements were relatively large
(Figure S2).

Discussion
To the best of our knowledge, we report the first examination of
the human placental transfer and metabolism of ZEN in an ex
vivo human placental perfusion model and determined a placental
transfer of ZEN at only a slightly slower pace than the highly dif-
fusible reference compound antipyrine. Additionally, we showed
that the human placenta is capable of phase I and II metabolism of
ZEN to a-ZEL and ZEN-14-Sulf. The metabolites were quickly
released into the fetal and maternal circulation with a preferential
release toward the maternal circulation. Our findings are in good
agreement with previous results from pregnant rats fed with ZEN
in mid and end gestation (Bernhoft et al. 2001). In contrast, no pla-
cental transfer of ZEN was observed upon exposure of mice in
early pregnancy (Appelgren et al. 1982). Therefore, placental me-
tabolism and transfer of ZEN may be different in early human
pregnancy as well, when the placental barrier is much thicker to
protect the developing fetus. However, this possibility is difficult
to investigate because human placental perfusion studies are lim-
ited to term placentas.

For our studies, we applied a high but noncytotoxic concen-
tration of ZEN (1 lM; 318 lg=L) based on previous in vitro

studies showing that ZEN as well as a- and b-ZEL were not cyto-
toxic up to a concentration of 10 lM to BeWo cells after 48 h of
exposure (Prouillac et al. 2009, 2012). However, ZEN and its
metabolites might induce subtoxic effects to the placental tissue.
For instance, ZEN (10 lM) has been shown to induce trophoblast
differentiation and alter ABC transporter gene expression in
BeWo trophoblast cells (Prouillac et al. 2009). In contrast, its
reduced metabolites were not able to induce trophoblast differen-
tiation but did again modulate ABC transporter gene expression
(Prouillac et al. 2012). Additionally, ABC transporters were
altered in placentas of pregnant rats exposed to ZEN (Gao et al.
2017). An interesting aspect is that we also observed a potential
impact of ZEN on human placental permeability in our ex vivo
placental perfusion experiments. Translocation of the passive
transcellular diffusion marker antipyrine was increased in the
presence of ZEN, suggesting that ZEN may interfere with placen-
tal transfer of essential endogenous compounds or decrease bar-
rier function toward xenobiotic substances. However, ZEN did
not affect paracellular transport because it did not alter the trans-
location of the passive paracellular diffusion marker creatinine.
Another explanation for how small amounts of xenoestrogens
could affect fetal health is by disturbance of endocrine signaling
pathways. In pregnancy, endogenous estrogen levels are very high
in the maternal circulation as a consequence of placental estrogen
production and preferential release toward the maternal circulation
[reviewed in Kaludjerovic and Ward (2012)]. However, the high
maternal estrogen plasma levels appear to be shielded from the
embryo by the placenta as shown in rhesus monkeys (Slikker
et al. 1982) and through fetal sequestering by alpha-fetoprotein,
protecting the developing embryo from the bulk of maternal
circulating estrogens [reviewed in Bondesson et al. (2015)].
Therefore, in light of the lower fetal estrogen levels, maternofe-
tal translocation of xenoestrogens may significantly contribute
to fetal estrogen levels and interfere with the fetomaternal en-
docrine system that regulates estrogen production during devel-
opment. Evidence exists that a decrease in placental estrogen
production during sensitive stages of development may have
the potential to alter gene transcription and DNA methylation
patterns of cells, suggesting that environmental estrogens may
be able to induce epigenetic changes in the developing fetus
[reviewed in Kaludjerovic and Ward (2012)].

In humans, ZEN has been shown to be predominately metab-
olized into a-ZEL (major phase I metabolite) and to a minor
extent also to b-ZEL and thereafter glucuronidated. These forms
are then, together with free and glucuronidated ZEN, excreted via
urine (Mirocha et al. 1981; Warth et al. 2013). Until now, to the
best of our knowledge, human sulfation pathways have been

0
1
2
3
4
5
6
7
8

0 60 120 180 240 300 360

α-
ZE

L 
(μ

g/
L)

Perfusion time (min)

0

5

10

15

20

25

0 60 120 180 240 300 360

ZE
N

-1
4-

Su
lf

(μ
g/

L)

Perfusion time (min)

Maternal
Fetal

Maternal
Fetal

*

*

*

Figure 4. Perfusion profiles of a-zearalenol (a-ZEL) and zearalenone-14-sulfate (ZEN-14-Sulf). Release of a-ZEL and ZEN-14-Sulf to the maternal and fetal
circulation during human placental perfusion with 318 lg=L zearalenone (ZEN) over 6 h. Data represent mean±SD of three independent placentas perfused
with medium containing ZEN. Note: p<0:05 is considered statistically significant (* denotes differences between maternal and fetal concentrations in a-ZEL
perfusions). Perfusion data comparing maternal and fetal concentrations were analyzed by unpaired Student's t-test.

Environmental Health Perspectives 000000-6 00(00) 0 0000



reported only in epithelial colorectal adenocarcinoma cells
(Caco-2) (Pfeiffer et al. 2011).

Researchers have proposed that hydroxylation of ZEN is
mediated through 3 a- and 3 b- hydroxysteroid dehydrogenases
(HSD) (Olsen et al. 1981; Malekinejad et al. 2005). The enzyme
3 b-HSD has been shown to be highly expressed in the human
placenta (Mason et al. 1993). Previous studies in cell models
revealed that the human placenta is likely capable of metaboliz-
ing ZEN and ZAN via phase I metabolism into their reduced
forms (Huuskonen et al. 2015). We could partly confirm this data
in the ex vivo perfusion model. Although ∼4% of the introduced
ZEN was reduced to a-ZEL after 360 min of perfusion, a signifi-
cant metabolism to b-ZEL was not observed. The placental

metabolism of ZEN into a-ZEL is of particular relevance due to
its far higher relative estrogenic potency in comparison with the
parent compound (Arukwe et al. 1999; Frizzell et al. 2011; Tatay
et al. 2017).

We further found phase II metabolism of ZEN to ZEN-14-
Sulf, to the best of our knowledge for the first time in human pla-
centa; ∼8% of ZEN introduced to the test system was converted
to this metabolite after 360 min of perfusion. ZEN-14-Sulf has
been described as fungal ZEN conjugate (Binder et al. 2017);
however, as mentioned before, it can also be produced by human
epithelial colorectal adenocarcinoma cells (Pfeiffer et al. 2011) in
vitro. Because a-ZEL, b–ZEL, ZAN, a-ZAL, and b-ZAL carry
the same 14-hydroxyl group as ZEN, we also expected possible
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sulfation of these compounds (in our system especially sulfation
of a-ZEL) but could not verify this hypothesis due to a lack of
appropriate standard material. The placenta is known to require
sulfate for sulfation of endogenous estrogens and thyroid hor-
mones. The sulfate supply for the fetus is also mediated through
the placenta. Reduced availability of sulfate due to detoxification
processes may therefore result in a placental phenotype and dis-
turbed fetal development (Dawson et al. 2017).

Human glucuronidation of ZEN and its reduced metabolites is
mediated by UDP-glucuronosyltransferases (UGTs), mainly by
UGT1A1, 1A3, and 1A8 in the liver, intestine, and eventually
also in other organs. These UGTs preferably glucuronidate the
unhindered 14-hydroxyl moiety of ZEN and its phase I metabo-
lites (Pfeiffer et al. 2010). It has been shown before, that the
human placenta expresses UGT2B isoforms (Collier et al. 2002).
For placental UGT1A isoform expression conflicting results are
reported, but evidence is growing that UGT1A1, 1A4, and 1A6
are expressed in healthy placentas (Collier et al. 2002; Reimers
et al. 2011; Collier et al. 2015). From the principal potential of
the placenta to express UGT1A1, it can be assumed that ZEN
and its metabolites might be glucuronidated also in our placental
perfusion model. However, this assumption was not confirmed in
this study. A possible explanation could be that the glucuronida-
tion potential of the placenta may be far lower than its sulfation
potential, and consequently, the glucuronides are produced in
such a low concentration that detection by means of the applied
analytical method was not feasible.

ZEN and its nine analyzed metabolites were detected neither
in placental tissue previous to the perfusion nor in fetal plasma
obtained from a fetal placental vein, indicating that ZEN did not
accumulate in the fetal circulation during the pregnancies of these
mothers. However, we point out that a relatively low number of
placentas and corresponding fetal plasma samples (n=6) were
examined, and the mothers were probably fasting due to planned
caesarian sections. Therefore, previously ingested ZEN might
have been cleared already because ZEN elimination has been
shown to be nearly completed within 3 d in various mammals
(Ueno et al. 1977; Mirocha et al. 1981).

Despite some obvious strengths of the ex vivo perfusion model,
such as the use of a complex and highly functional human tissue in
dynamic conditions and its accessibility for mechanistic studies,
there are certain limitations to this approach. One limitation is the
restriction of the perfusion duration to approximately 6 h. However,
this duration was sufficient to detect placental metabolism of ZEN
to a-ZEL and ZEN-14-sulfate as well as maternofetal transfer of
ZEN with a plateau already at 3 h of perfusion. Another drawback
is the use of term placenta, which does not provide insights on pla-
cental transfer and metabolism at earlier stages of pregnancy.
Moreover, the throughput of this method is limited, yet we obtained
highly consistent results from three independent perfusion studies.
Finally, due to the absence of maternal and fetal tissues, kinetic and
metabolic data reflect those of the isolated human placental tissue
only and may not be fully representative of the physiological situa-
tion in pregnant women. An analytical limitation of the study is the
targeted approach applied for the identification of ZEN metabolites
which takes only known biotransformation products into account.
Future work may exploit an isotope-based metabolomic workflow
(Bueschl et al. 2017) to understand the full extent of ZEN metabo-
lism in an untargeted manner. Finally, researchers need to confirm
whether similar findings can be achieved with lower ZEN doses,
although this will likely result in a lower number of identified
metabolites due to limitations in sensitivity even when applying
highly sensitive tandem mass-spectrometry–based assays.

A nonbalanced diet among pregnant women may increase the
chance that the fetus is exposed to higher levels of these

mycoestrogens, and more emphasis should be placed on accurate
exposure assessment via human biomonitoring of ZEN and its
key metabolites throughout pregnancy.

ZEN and some of its metabolites have been frequently detected
in human urine from various countries at low doses. For example,
ZEN, a-ZEL, and b-ZEL were found in urine samples from
Germany (Ali and Degen 2018), southern Italy (Solfrizzo et al.
2014), and Nigeria (Šarkanj et al. 2018) at median concentrations of
0.04, 0.056, and 0:2 lg=L (ZEN), 0.23, 0.074, and 0:87 lg=L
(a-ZEL), 0.03, 0.088, and 0:33 lg=L (b-ZEL), respectively. A study
on New Jersey girls revealed urinary ZEN (median 0:32 lg=L),
a-ZEL (median 0:06 lg=L), b-ZEL (median 0:16 lg=L), and
a-ZAL (median 0:17 lg=L) (Bandera et al. 2011). Further urinary
biomonitoring studies were summarized by Mally et al. (2016). The
few biomonitoring studies investigating blood revealed ZEN levels
typically below 1:0 lg=L (Massart et al. 2008; Sun et al. 2019).

In addition, these natural contaminants likely contribute signif-
icantly to the overall xenoestrogen exposure that unborn fetuses
may face. Elevated in utero exposure to endogenous estrogens or
xenoestrogens has been shown to disturb the development of the
reproductive system of the fetus in human and animals (Palmlund
1996; Saunders et al. 1997; Welshons et al. 1999; Delbès et al.
2006). In pigs, a decreased fetus and uterus weight (Etienne and
Jemmali 1982) as well as a decreased number of fetuses were
observed upon maternal ingestion of zearalenone (Young et al.
1990). In mice, exposure to ZEN in early pregnancy caused
delayed implantation, loss of conceptuses, and a decreased growth
of the fetuses (Kunishige et al. 2017). In addition, environmental
exposure to xenoestrogens like BPA may be related to the carcino-
genesis of breast cancer and various other tumors (Fernandez and
Russo 2010; Fucic et al. 2012).

Conclusions
We revealed in an ex vivo human placental perfusion model the
fast transfer of ZEN across the human placental barrier as well as
phase I and phase II metabolism of the parent toxin ZEN into the
highly estrogenic a-ZEL and the less active ZEN-14-sulfate. Our
study will help to further evaluate the risks of an in utero expo-
sure to xenoestrogens and highlights the need for a more compre-
hensive assessment of exposure and combinatory toxicological
effects in the context of the exposome paradigm (Dennis et al.
2017; Warth et al. 2017).
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