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Sources [103 Tg CO/y] (Zheng et al., 2019)
anthropogenic 0.7
(mainly combustion of fossil fuels and biofuels) 
biomass burning 0.5
oceanic 0.02
biogenic 0.2
oxidation of methane 0.9
oxidation of hydrocarbons 0.3
total 2.6           

Sources and Sinks of Atmospheric Carbon Monoxide

Park et al., 2015
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Sinks (approx.)
oxidation by OH 78%
soil uptake 17%
stratosphere 4%

CO oxidation by OH
CO + OH → CO2 + H
H + O2 → HO2

HO2 + NO →OH + NO2

NO2 + hv → NO + O
O + O2 → O3

Net: CO + 2O2 → CO2 +O3

Atmospheric Lifetime: months

Sources and Sinks of Atmospheric Carbon Monoxide

Sources [103 Tg CO/y] (Zheng et al., 2019)
anthropogenic 0.7
(mainly combustion of fossil fuels and biofuels) 
biomass burning 0.5
oceanic 0.02
biogenic 0.2
oxidation of methane 0.9
oxidation of hydrocarbons 0.3
total 2.6           
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Global Distribution of Carbon Monoxide Sources

EDGAR - Emissions Database for Global Atmospheric Research, https://edgar.jrc.ec.europa.eu/
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Carbon Monoxide Levels in the Atmosphere

[1] World Data Centre for Greenhouse Gases, https://gaw.kishou.go.jp
[2] Swiss National Air Pollution Monitoring Network, https://www.empa.ch/nabel
[3] https://www.epa.gov/indoor-air-quality-iaq/what-average-level-carbon-

monoxide-homes
[4] Vollmer et al., 2007
[5] Bond et al., 2010
[6] Jaffe & Chavasse, 1999

typical carbon monoxide mole fractions in various environments:

0.04 to 0.2 ppm natural background atmosphere level [1] 

0.3 to 0.4 ppm yearly average at a kerbside station in CH [2]
0.5 to 5 ppm average background level in homes [3]
6.9 ppm Air Quality Limit in CH (24h-average)
5 to 15 ppm near properly adjusted gas stoves in homes [3]
9 ppm US 8-hour Air Quality Standard [3]
up to 16 ppm levels in a highway tunnel [4]
30 ppm threshold limit values at workplaces in Germany 
> 30 ppm in homes near poorly adjusted stoves [3]
up to ~ 4’000 ppm undiluted car exhaust [5]
16’000 – 37’000 ppm cigarette smoke [6]

WDCGG Data Summary #44, 2020
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 CO is a good tracer for anthropogenic pollution and biomass burning

 CO sources are known well => relative emission of other anthropogenic pollutants can 
be estimated

 CO is an intermediate product of the VOC degradation on the way to CO2

 CO causes adverse health effects under highly polluted conditions 

Rationale for CO Measurements in the Atmosphere

http://books.google.com/books?id=RCCWMcWoZtIC
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Techniques for Ambient Air in-situ CO Measurements

 Manometric Technique (e.g. Brenninkmeijer, 1993)

 Gas Chromatography (GC), followed by

- flame ionization detection (GC-FID) (e.g. Rasmussen & Khalil, 1981)

- HgO Reduction Detection (GC-RGD) (e.g. Novelli et al., 1998; Gros et al., 1999)

 Tunable Diode Laser Spectrometry (TDLAS) (e.g. Sachse et al., 1987)

 Non-Dispersive Infrared Spectrometry (NDIR) (e.g. Parrish et al., 1994)

 Vacuum Ultraviolet (UV) Fluorescence (e.g. Gerbig et al., 1999)

 Quantum Cascade Laser Absorption Spectroscopy (QCL) (Baer et al., 2002; McManus et al., 2015)

 Fourier-Transform Infrared Spectrometry (FTIR) (e.g. Griffith et al., 2012)

 Cavity Ringdown Spectroscopy (CRDS) (e.g. Chen et al., 2013)
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Discontinuous techniques
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Manometric Technique

An air sample is first passed through a series of 
chromatographic columns and cryogenic traps 
to remove CO2, nitrogen oxides, water, and 
hydrocarbons. Flow over Schütze reagent (I2O5
on silica gel) quantitatively converts CO to CO2, 
which is collected cryogenically.

The amount of CO-derived CO2 is determined 
manometrically.

This sample preparation procedure provides an 
absolute manometric technique for 
determination of CO concentrations.

Brenninkmeijer et al., 1993
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Gas Chromatography

detector

gas flow
separation column

air sample

increasing affinity to
stationary phase

McNair et al., Basics Gas Chromatography, 2019

sample chromatogram for volatile organic compounds in Switzerland 
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Gas Chromatography, cont’d

sample chromatogram for CH4 and CO at Jungfraujoch
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 CH4 and CO, measured by flame ionization detection (FID)
 FID is best suited for compounds with C-H and C-C bonds
 Therefore, it requires that CO is first converted to CH4. A hydrogen-rich oxygenated carrier gas 

over a hot nickel catalyst (NC) is typically used.

setup at Jungfraujoch
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Continuous techniques

photo: Peter Baracchi
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NDIR (Non-Dispersive Infrared Spectrometry)

 Infrared (IR) radiation from a stable source is first filtered and focused before passing through an 
optical cell containing the sample. IR absorption is detected.

 A reference signal is needed to compensate for matrix effects. This can be realized by means of 
Gas Filter Correlation (GFC) or by selective removal of CO with a catalyst.

Advantage: inexpensive continuous measurements, moderate requirements in terms of operation and 
maintenance.

Disadvantage: rather high instrumental noise, rather high detection limit (a few tens of ppb), 
potential instrument drift.

 NDIR is most suitable for sites with elevated CO concentrations and less so at remote sites. 

sample detector
signal and data 

processing
IR source
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NDIR (Non-Dispersive Infrared Spectrometry)

Sample Detector
IR source

gas filter

 radiation from IR source passes through a gas filter altering 
between CO and N2

 CO gas filter produces a reference beam, N2 gas filter 
produces a measure beam

Gas Filter Correlation 

Schematic of Thermo Scientific, model 48i
commercially e.g. available through Thermo Fisher Scientific Inc., USA
https://www.thermofisher.com/
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NDIR (Non-Dispersive Infrared Spectrometry)

Schematic of Horiba, APMA-370

 air flow toggles between sample and reference
 the reference is sample air with only CO removed by a catalyst

 both NDIR systems respond specifically to CO (theoretically) 

Cross Flow Modulation 

commercially e.g. available through Horiba Ltd, Japan
https://www.horiba.com/
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NDIR (Non-Dispersive Infrared Spectrometry)
 commercial NDIR instruments may show a significant zero drift of several ppb per hour
 as a consequence, frequent zeroing is needed to correct the data
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 depending on instrument and laboratory conditions, 
zeroing needs to be performed every few hours

Zellweger et al., 2009
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Generation of CO-free air

heated
oxidation
catalyst

converts CO → CO2 filter

 caution: commercially available zero air generators are often not optimized for CO removal

e.g.
Sofnocat
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Vacuum UV Resonance Fluorescence (VURF)

CO shows resonance fluorescence
(160-190 nm) when excited with UV (150 nm)

Advantage: fast (1s), precise, linear

Disadvantage: expensive, delicate optics, 
maintenance intensive

Gerbig et al., 1999
commercially available through Aero-Laser GmbH, Germany
https://www.aero-laser.de
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Laser Absorption Spectroscopy

Provencal et al., 2005

CO is detected in the near to mid-infrared region
Initially, laser had to be cooled with liquid nitrogen, which is 

unsuitable for long-term monitoring

wavelength ~ 4.5 µm 
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Cavity-Enhanced Laser Absorption Spectroscopy

Hendriks et al., 2008

Off-axis integrated cavity output spectroscopy

 simultaneous, rapid measurements of several trace gases with 
absorption features in the same wavelength range

 cryogenic free, measurement in the mid-infrared

wavelength ~ 4.5 µm 

commercially available through ABB-Los Gatos Research, USA
http://www.lgrinc.com/
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Cavity-Enhanced Laser Absorption Spectroscopy

Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS)

 simultaneous, rapid measurements of several trace gases with 
absorption features in the same wavelength range

 cryogenic free, measurement in the mid-infrared
 also produces and sells Dual QCL trace gas monitors which 

allow for the simultaneous measurement of multiple species, 
including NO, N2O, NO2, NH3, HONO, HNO3, CO, CH4, C2H4, 
HCHO, CHOOH, SO2, COS, O3, HOOH and others

commercially available through Aerodyne Research Inc., USA
https://www.aerodyne.com/

Mini Laser Trace Gas Monitor Dual Laser Trace Gas Monitor 
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Cavity-Enhanced Laser Absorption Spectroscopy

Cavity Ringdown Spectroscopy

 simultaneous, rapid measurements of several trace gases 
with absorption features in the same wavelength range

 cryogenic free, measurement in the near-infrared
 laser is shut off, the intensity of light reaching the detector 

decreases or “rings down”
commercially available through Picarro, Inc., USA
https://www.picarro.com/



martin.steinbacher@empa.ch GAWTEC webinar, 04 November 2021 # 24

Fourier Transform Infrared (FTIR) Spectroscopy

Griffith et al., 2012

commercially available through Acoem Ecotech, Australia
https://www.ecotech.com/

 FTIR measures over a broad wavelength range in the 
infrared region.

 simultaneous measurements of several trace gases with 
absorption features in the IR range.

 requires nitrogen as purge gas
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Other Manufacturers …

e.g.

Miro Analytical – Direct laser absorption spectroscopy; https://miro-analytical.com/ 

Thermo Scientific – Mid-IR Absorption Spectroscopy; https://www.thermofisher.com/

Tiger Optics – Cavity Ringdown Spectroscopy; https://www.tigeroptics.com/

Aeris Technologies – Long-path Tunable Diode Laser Spectrometry; https://aerissensors.com/ 

…
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Calibration, Performance & 
Comparison of Different 

Techniques
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Calibration with Zero Air and ppm-level Reference Gas

analyzer

vent

+ requires only one cylinder
+ multi-point calibration is possible
+ consumption of reference gas is small
+ ppm-level standards are less prone to drifts

- difficult to achieve very good accuracy / to reach
GAW compatibility goals

- direct traceability to GAW reference scale is not given
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Calibration with a Suite of Ambient Level Reference Gases

air inlet

ICOS RI, 2020+ allows direct traceability to GAW reference scale
+ maximum accuracy and compatibility with other stations
+ setup can usually also accommodate other tanks for quality control

- consumption of reference gas is higher
- ppb-level standards are prone to drifts
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Propagation of the GAW Reference Scale

https://gml.noaa.gov/ccl/airstandard.html

primary
laboratory
standards

in-situ
standards

station operators

NOAA ESRL is the GAW Central Calibration Laboratory (CCL) for CO2, CH4, CO, …
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Drifts in ppb-level CO reference standards
CO is high pressure cylinders is often subject to drift

https://gml.noaa.gov/ccl/co_scale.html

Drifts in primary standards at CCL

Drifts in travelling 
standards at the World 

Calibration Centre for CO 
(WCC-Empa)

WMO, 2021

 drift needs to be tracked and to be accounted for
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Performance & Comparison of Different Techniques

Zellweger et al., 2009
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Performance & Comparison of Different Techniques

Zellweger et al., 2012
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Summary of WCC-Audit Results
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Performance & Comparison of Different Techniques

Results of
2-weekly
calibrations

Yver Kwok et al., 2021 https://icos-atc.lsce.ipsl.fr/dp
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Graphical summary

values are estimates and can vary depending on instrument
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Conclusions
 several analytical techniques are available for CO measurements in ambient air
 selection of measurement technique (and manufacturer) strongly relies on

• the (scientific) rationale of the measurements (also: duration of the 
observations (long-term vs. campaign-like measurements), long-term stability 
vs. short-term, precision)) 

• expected concentrations and its variability,
• capacities for operation and maintenance,
• available sample,
• availability/accessibility of reference gases,
• skills and expertise,
• available space,
• financial resources,
• …
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Thank you for your attention !
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