Continuous atmospheric composition observations and beyond

from measurements to climate services

Martin Steinbacher, Stephan Henne

Empa, Laboratory for Air Pollution / Environmental Technology & WMO/GAW Quality Assurance / Science Activity Centre Switzerland

Empa Materials Science and Technology

BMKG's continuous monitoring stations

BMKG's (planned) greenhouse gas flask sampling network

most recent plans: tall tower network for GHG monitoring on Sumatra

BMKG webinar, 06 August 2021

WMO's Integrated Global GHG Information System (IG3IS)

IG3IS supports ...

- national stakeholders and national inventory preparation
- mitigation efforts of cities and other non-state actors
- > Paris Agreement's global stocktake
- the detection, quantification, and mitigation opportunities of anthropogenic methane emissions

GAW Report No. 245

An Integrated Global Greenhouse

Gas Information System (IG3IS)

Science Implementation Plan

see the IG3IS webpage <u>https://ig3is.wmo.int/en</u> and the IG3IS implementation plan <u>https://library.wmo.int/doc_num.php?explnum_id=10034</u> for more information

WMO's Integrated Global GHG Information System (IG3IS)

		Section States	_				
		An Integrated Global Greenhouse Gas Information System (IOTS) Science Implementation Plan		Increasing model complexity			
	An Integ Gas Info Science			Tier 1	Tier 2	Tier 3	
		6= IØS=-		Use established (global) model and inversion system, operated by external experts	Use established (global) model and inversion system; develop local expertise to operate the system	Taylored high-resolution modeling and inversion system, operated by local experts	
	Tier 1	Single representation in coursection station every	entative ıntry or 500-1000 km	Trend in total emissions in area of influence of site(s)	Total emissions and their trend in area of influence of site(s)	Total emissions and their trend with higher accuracy in area of influence of site(s)	
	Tier 2	Network of si all parts of co measurement infrastructure	ites covering puntry, simple t	Trend in country total emissions, no separation between anthropogenic and biospheric fluxes	Total country emissions and their trend, no separation between anthropogenic and biospheric fluxes	Total country emissions and their trend with higher accuracy, no separation between anthropogenic and biospheric fluxes	
	Tier 3	Network of si all parts of co additional tra radiocarbon,	ites covering puntry, acers (radon, isotopes)	Trend in country total emissions, separation between anthropogenic and biospheric fluxes, sector- specific information	Total country emissions and their trend, separation between anthropogenic and biospheric fluxes, sector- specific information	Total country emissions and their trend with higher accuracy, separation between anthropogenic and biospheric fluxes, sector-specific info.	

IG3IS "pioneer study"

Atmos. Chem. Phys., 16, 3683–3710, 2016 www.atmos-chem-phys.net/16/3683/2016/ doi:10.5194/acp-16-3683-2016 © Author(s) 2016. CC Attribution 3.0 License.

Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

Stephan Henne¹, Dominik Brunner¹, Brian Oney¹, Markus Leuenberger², Werner Eugster³, Ines Bamberger^{3,4}, Frank Meinhardt⁵, Martin Steinbacher¹, and Lukas Emmenegger¹

Aim: support of national bottom-up inventory reporting by using atmospheric observations, transport simulations and inverse methods to derive national total emissions and compare those to NIR reported values.

Inverse methods

Bayesian inverse modelling: CH₄, N₂O Tracer ratio method: synthetic gases

IG3IS "pioneer study"

Atmos. Chem. Phys., 16, 3683–3710, 2016 www.atmos-chem-phys.net/16/3683/2016/ doi:10.5194/acp-16-3683-2016 @ Author(s) 2016. CC Attribution 3.0 License.

Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

Stephan Henne¹, Dominik Brunner¹, Brian Oney¹, Markus Leuenberger², Werner Eugster³, Ines Bamberger^{3,4}, Frank Meinhardt⁵, Martin Steinbacher¹, and Lukas Emmenegger¹

Simulated Footprints and Concentration Timeseries

Swiss Methane Emissions (2013 – 2019)

- Spatial distribution less well constrained by current network
- East/west shift in emission distribution (potentially boundary effect)

Swiss Methane Emissions (2013 – 2019)

Temporal evolution

Seasonal variability

Spring maximum & winter minimum Seasonal amplitude: ±20 %

Based on 8 sensitivity inversions per year

Global methane simulations – importance of biomass burning

simulation and visualization by Empa

Biomass burning related services

Provision of critical weather information services to prevent and

curb drought-induced forest fires

BMKG news article released in 2019 on WMO webpage https://public.wmo.int/en/media/n ews-from-members/provision-ofcritical-weather-informationservices-prevent-and-curbdrought Sentinel Satellite Observation of CO Concentration on 20 September 2019

other resources: e.g. Copernicus Atmospheric Monitoring Service <u>https://atmosphere.copernicus.eu/global-forecast-plots</u>

Carbon Monoxide

Carbon monoxide (CO) is a pollutant in the atmosphere produced by the burning of fossil fuels as well as wildfires and biomass burning. It has an average life-time of several months and therefore clearly demonstrates longrange transport. The CAMS daily forecasts show how CO is distributed around the globe and how plumes from, for instance, wildfires are transported across continents by the prevailing winds.

Base time: Wed 04 ▼ Area: South East A.... ▼ Level: Surface ▼

martin.steinbacher@empa.ch

Challenges when addressing CO2 – role of biosphere

-3.7

Simulation: Yu Liu & Nicolas Gruber (ETH Zurich) Animation: Dominik Brunner (Empa)

Anthropogenic CO₂: EDGAR v4.2 (JRC) Biospheric CO₂: VPRM (MPI Jena)

martin.steinbacher@empa.ch

- the availability of continuous good-quality atmospheric composition measurements in Indonesia is important and is a key prerequisite for related climate services
- observational data need to be combined with atmospheric transport models and socioeconomic data (anthropogenic emissions) and information on natural fluxes
- collaboration with existing modelling frameworks and/or use of available products is recommended
- > reach out for support from the IG3IS office at WMO and its IG3IS Steering Committee

Thank you for your attention !

