

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office of Meteorology and Climatology MeteoSwiss

Introduction to Empa and Swiss GAW activities

Martin Steinbacher

Empa, Laboratory for Air Pollution/Environmental Technology, Dübendorf, Switzerland

Training of KMD staff, Duebendorf, 28 June till 02 July 2018

Empa in Numbers (2016)

3 Sites in Switzerland

Dübendorf, St. Gallen, Thun

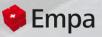
5 Departments

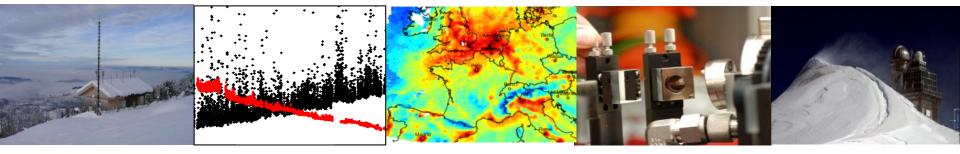
- Laboratories 30
- Employees (860 FTE; about 29% Women) 940
- Professors 30
- 200 PhD Students
- 42
- 42 Apprentices > 200 Master Students & Interns

Research Focus Areas

Natural Resources & Pollutants

Health & Performance


Sustainable Built Environment


Energy

Nanostructured **Materials**

Air Pollution & Environmental Technology Lab

APPROACH & GOAL

- to **understand emissions** and fate of man-made pollutants and greenhouse gases
- to provide the scientific basis for technical solutions to reduce emissions
- to **guide decision makers** in the field of environmental politics

Research Sites & Central Facilities

field sites

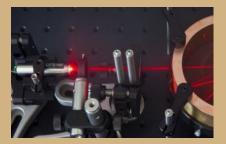
Swiss National Air Pollution Monitoring Network

Process studies

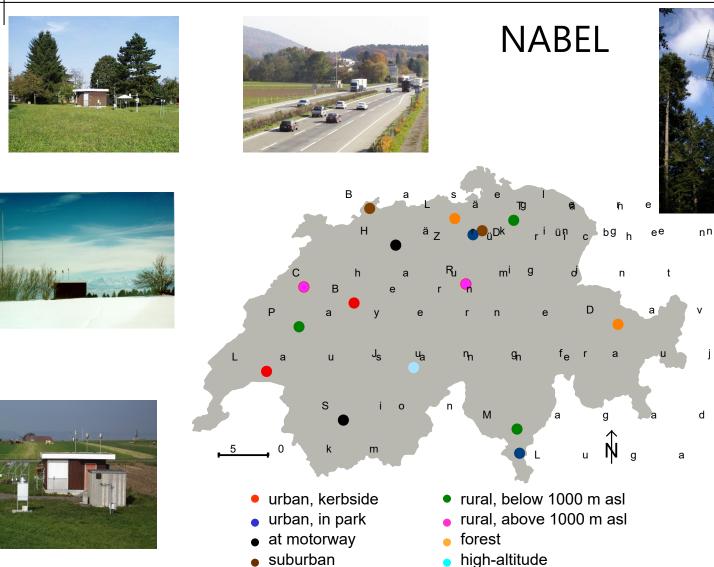
computing capacity: Empa-Cluster: IPAZIA / CSCS Manno / C2SM

Iabs

Central Calibration Lab Swiss Air Pollution Network


Reference materials & Instrument testing

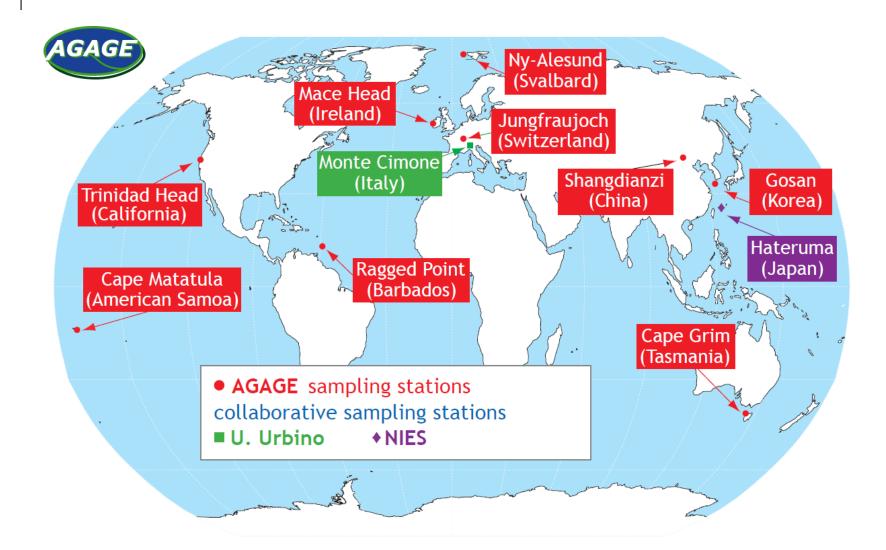
Global Atmosphere Watch


World Calibration Centre & QA /SAC Switzerland

Spectroscopic Lab

optical table and electronics instrument development

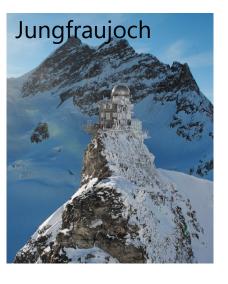
Swiss National Air Pollution Monitoring Network



5 🛛 💝 Empa

AGAGE and collaborative sites

The Swiss GAW-Programme


- under the auspices of MeteoSwiss
- operation of the global GAW station Jungfraujoch (Uni Bern, Empa, PSI, Uni Liege, BIRA Brussels, MeteoSwiss)
- vertical ozone distribution and total ozone in Payerne und Arosa (MeteoSwiss)
- radiation measurement network in Payerne, Davos, Locarno und Jungfraujoch (MeteoSwiss)
- World Optical Depth Research and Calibration Center (WORCC) (PMOD)
- World Calibration Centre (WCC) for surface ozone, methane, carbon monoxide and carbon dioxide (Empa)
- Quality Assurance / Science Activity Centre (QA/SAC) (Empa)
- support of ozone soundings in Nairobi, Kenya (MeteoSwiss)
- partnership with stations in Algeria, Indonesia and Kenya (part of QA/SAC)
- operation of the GAW-Station Information System (MeteoSwiss)

Empa's Contribution to the GAW – Observing System

Operation (Gases)

Swiss global GAW station

Collaboration & Twinning

Support for new stations

Swiss regional GAW stations

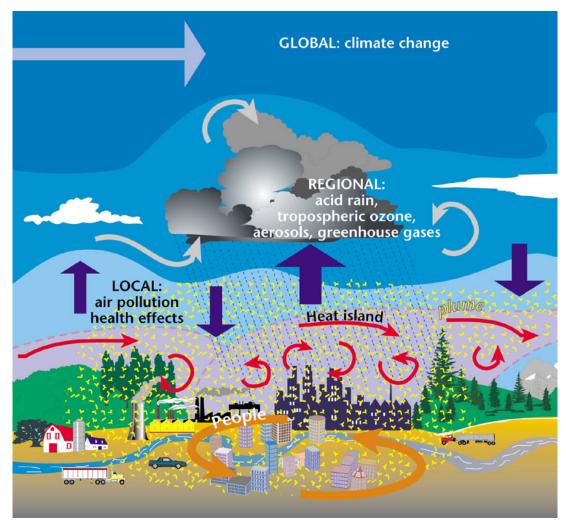
Comprehensive Measurement Programme @ JFJ

Reactive Gases and Greenhouse Gases nearly 100 continuous time-series **Halocarbons** Greenhouse Gases Montreal & Kyoto N_2O CH_4 CO_2 relevant, including SF₆ ¹³C-CO₂ & ¹⁸C-CO₂ cont. **Reactive** Gases Ozone CO SO₂ NO₂ NO NO_v H₂ VOC

JFJ within GAW

martin.steinbacher@empa.ch, Laboratory for Air Pollution/Environmental Technology

THE GLOBAL ATMOSPHERE WATCH PROGRAMME 25 YEARS OF GLOBAL COORDINATED Atmospheric composition observations AND ANALYSES


- 1950s: WMO launched first a programme on atmospheric chemistry and the meteorological aspects of air pollution
- 1957 (International Geophysical Year): development of first standard operation procedures, central data centres; establishment of Global Ozone Observing System (GO3OS)
- Late 1960s: Background Air Pollution Monitoring Network (BAPMoN) was established, focusing on precipitation chemistry, aerosol and carbon dioxide measurements
- In 1989: GO3OS and BAPMoN were consolidated into the Global Atmosphere Watch (GAW) programme

further reading:

Global Atmosphere Watch (GAW) Programme: 25 years of global coordinated atmospheric composition observations and analyses https://library.wmo.int/pmb_ged/wmo_1143_en.pdf

Air Pollution and Climate – different scales

source: http://mce2.org/wmogurme/

The Global Atmosphere Watch reactive gases measurement network

Martin G. Schultz^{1*} • Hajime Akimoto²³ • Jan Bottenheim⁴ • Brigitte Buchmann⁵ • Ian E. Galbally⁶ • Stefan Gilge⁷ • Detlev Helmig⁸ • Hiroshi Koide^{*} • Alastair C. Lewis¹⁰ • Paul C. Novelli¹¹ • Christian Plass-Dülmer⁷ • Thomas B. Ryerson¹¹ • Martin Steinbacher⁵ • Rainer Steinbrecher¹² • Oksana Tarasova¹³ • Kjetil Tørseth¹⁴ • Valerie Thouret¹⁵ • Christoph Zellweger⁵

Elementa: Science of the Anthropocene * 3: 000067 * doi: 10.12952/journal.elementa.000067 elementascience.org

Global distribution and trends of tropospheric ozone: An observation-based review

O. R. Cooper^{1,2*} * D. D. Parrish² * J. Ziemke³ * N. V. Balashov⁴ * M. Cupeiro⁵ * I. E. Galbally⁶ * S. Gilge⁷ * L. Horowitz⁸ * N. R. Jensen⁹ * J.-F. Lamarque¹⁰ * V. Naik^{8,11} * S. J. Oltmans^{1,2} * J. Schwab¹² * D. T. Shindell¹³ * A. M. Thompson^{4,14} * V. Thouret¹⁵ * Y. Wang¹⁶ * R. M. Zbinden¹⁷

Elementa: Science of the Anthropocene * 2: 000029 * doi: 10.12952/journal.elementa.000029 elementascience.org

How to most effectively expand the global surface ozone observing network

E. D. Sofen¹, D. Bowdalo¹, and M. J. Evans^{1,2}

¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
²National Centre for Atmospheric Science, Department of Chemistry, University of York, York, YO10 5DD, UK

Correspondence to: E. D. Sofen (esofen@gmail.com) and M. J. Evans (mat.evans@york.ac.uk)

Received: 15 July 2015 – Published in Atmos. Chem. Phys. Discuss.: 5 August 2015 Revised: 27 December 2015 – Accepted: 18 January 2016 – Published: 9 February 2016

Schultz, MG, et al 2017 Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. *Elem Sci Anth*, 5: 58, DOI: https://doi.org/10.1525/elementa.244

RESEARCH ARTICLE

Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations

Martin G. Schultz^{1,82}, Sabine Schröder¹, Olga Lyapina¹, Owen R. Cooper^{2,3}, Ian Galbally⁴, Irina Petropavlovskikh^{2,3}, Erika von Schneidemesser⁵, Hiroshi Tanimoto⁶, Yasin Elshorbany^{7,8}, Manish Naja⁹, Rodrigo J. Seguel¹⁰, Ute Dauert¹¹, Paul Eckhardt¹², Stefan Feigenspan¹¹, Markus Fiebig¹², Anne-Gunn Hjellbrekke¹², You-Deog Hong¹³, Peter Christian Kjeld¹⁴, Hiroshi Koide¹⁵, Gary Lear¹⁶, David Tarasick¹⁷, Mikio Ueno¹⁵, Markus Wallasch¹⁸, Darrel Baumgardner¹⁹, Ming-Tung Chuang²⁰, Robert Gillett⁴, Meehye Lee²¹, Suzie Molloy⁴, Raeesa Moolla²², Tao Wang²³, Katrina Sharps²⁴, Jose A. Adame²⁵, Gerard Ancellet²⁶, Francesco Apadula²⁷, Paulo Artaxo²⁸, Maria E. Barlasina²⁹, Magdalena Bogucka³⁰, Paolo Bonasoni³¹, Limseok Chang³², Aurelie Colomb³³, Emilio Cuevas-Agulló³⁴, Manuel Cupeiro³⁵, Anna Degorska³⁶, Aliun Ding³⁷, Marina Fröhlich³⁸, Marina Frolova³⁹, Harish Gadhavi⁴⁰, Francois Gheusi⁴¹,

... more to come later today

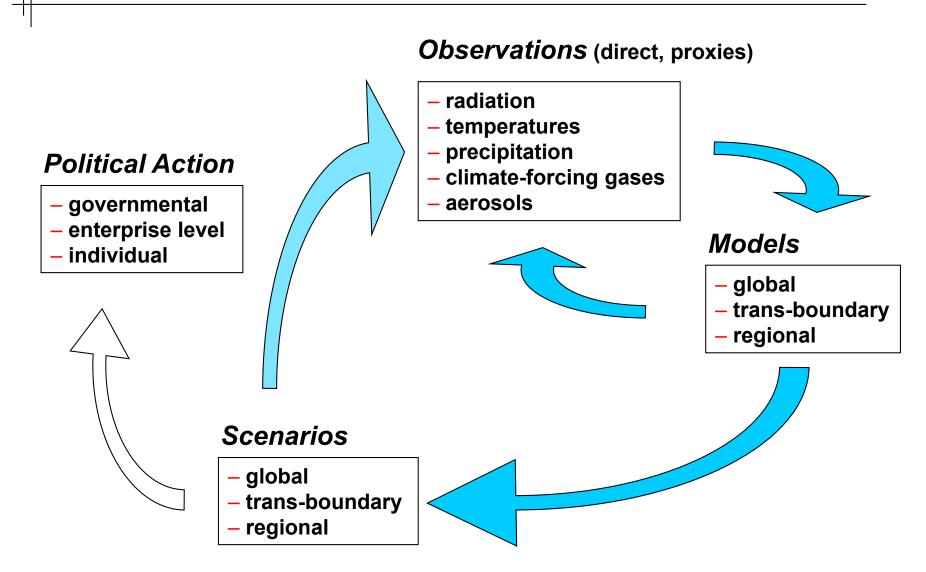
martin.steinbacher@empa.ch, Laboratory for Air Pollution/Environmental Technology

GAW Rationale

- Need to <u>understand</u> and <u>control</u> the increasing human influence on the global atmosphere.
- Need to <u>mitigate</u> socio-economic consequences affecting
 - weather,
 - climate,
 - human and ecosystem health,
 - water supply and quality,
 - agricultural productivity.

GAW Strategic Plan: 2008–2015 GAW Report # 172, 2007

Major Challenges


- Stratospheric ozone depletion and the increase of ultraviolet (UV) radiation.
- Changes in the weather and climate related to human influence on atmospheric composition, particularly, greenhouse gases, ozone and aerosols
- Risk reduction of air pollution on human health and issues involving longrange transport and deposition of air pollution.
- 'Chemical weather' prediction, 'high impact weather'

GAW Strategic Plan: 2008–2015 GAW Report # 172, 2007

Understanding & Mitigating Atmospheric Change

science for services

This Implementation Plan (IP) builds upon the growing importance of atmospheric composition observations and predictions, and focuses on research that enables a wide variety of **Products and Services** related to atmospheric composition. [...] GAW-lead thematic of <u>Atmospheric</u> application areas [Monitoring Composition, Forecasting Atmospheric Composition <u>Change</u>, Providing Atmospheric Composition information to support services in urban and populated areas] will help reduce societal risks from climate change, high-impact weather and events, and urban air pollution, and support conventions and treaties focused on sustainable development.

GAW Implementation Plan: 2016-2023, GAW Report # 228, 2017

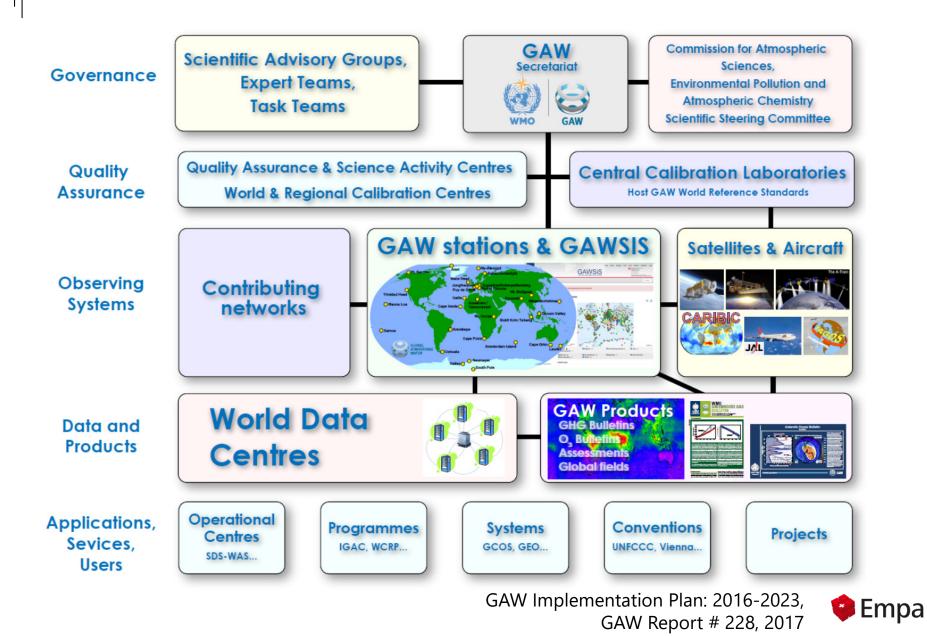
GAW Mission

- **Reduce environmental risks** to society and meet the requirements of environmental conventions.
- Strengthen capabilities to predict climate, weather and air quality.
- **Contribute to scientific assessments** in support of environmental policy.

through

- Maintaining and applying global, long-term observations of the chemical composition and selected physical characteristics of the atmosphere.
- Emphasizing quality assurance and quality control.
- Delivering **integrated products and services** of relevance to users.

GAW Implementation Plan: 2016-2023, GAW Report # 228, 2017



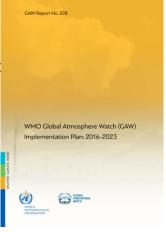
Organization of GAW

Useful documents

	GAW Report No. 172 REVISED 9:58 am, Sep 26, 2007				
			GAW Report No. 197		GAW Report No. 228
	WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015				
(Č)	@		Addendum for the Period 2012 – 2015 to the WMO Global Atmosphere Watch (GAW) Strategic Plan 2008 – 2015	ő	WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023
World leteorological Organization Wuntur - Churus - Mour		World Moted Organization	©	WEATHER CLIMATE WATER	
					WORLD WORLD GRCANZATION

http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html

Variable	Quality Assurance / Science Activity Centre	Central Calibration Laboratory	World Calibration Centre	Regional Calibra- tion Centres	World Data Centre
CO ₂	JMA (Asia, South- West Pacific)	NOAA-ESRL	NOAA-ESRL (round robin)		JMA
			Empa (audits)		
CO ₂ Isotopes		MPI-BGC			JMA
CH4	Empa (Americas, Europe, Africa)	NOAA-ESRL	Empa (Americas, Europe, Africa)		JMA
	JMA (Asia, South- West Pacific)		JMA (Asia, South- West Pacific)		
N ₂ O	UBA	NOAA-ESRL	KIT/IMK-IFU		JMA
SF ₆		NOAA ESRL	KMA-KGAWC		JMA
CFCs, HCFCs, HFCs					JMA
Surface Ozone	Empa	NIST	Empa	OCBA (South America)	NILU
со	Empa	NOAA-ESRL	Empa		JMA


WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023 MORE D METERORICOCCAL OPCINIZATION

GAW Report No. 228

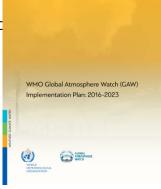
GAW report #228

martin.steinbacher@empa.ch, Laboratory for Air Pollution/Environmental Technology

GAW report #228

5.2.1 Central Calibration Laboratories (CCLs)

Specific activities:


- CCL-1. Host in the long term (many decades) the GAW primary standard and scale for a particular variable.
- CCL-2. Serve the needs of the other quality assurance facilities and activities of GAW.
- CCL-3. Prepare or commission laboratory standards required by GAW network Members for calibration purposes.
- CCL-4. Supply well-calibrated reference materials in to GAW analytical laboratories as needed for conducting intercomparisons of standards (in collaboration with the World or Regional Calibration Centres) where appropriate.

5.2.4 World Data Centres (WDCs) and Contributing Data Centres (CDCs)

Specific activities:

- WDC-1. Provide adequate archiving facilities for observational data for which GAW has global coordination responsibilities.
- WDC-2. Check submitted data for necessary format elements and the availability of comprehensive metadata and reject the submission of data that do not meet these formal criteria.
- WDC-3. Perform plausibility and consistency checks on submitted data, flag data problems, and provide feedback to the data providers, when necessary.
- WDC-4. Continually improve the ease of access to data of known quality by evolving WDC operations in line with the development of WIGOS and with particular attention to the increasing needs for NRT data services.
- WDC-5. Contribute to the agreement of standards for interoperability of data archives through the Expert Team on GAW World Data Centres (ET-GAW WDCs). This also includes support for the establishment of harmonized guidelines and data formats for the submission and dissemination of atmospheric composition data, metadata and products.
- WDC-6. Support and participate in the establishment of a distributed data management system involving all WDCs, the archives of contributing networks, and GAWSIS as the central metadata repository for discovery and access purposes.

GAW Report No. 228

GAW report #228

5.2.2 Quality Assurance/Science Activity Centres (QA/SACs)

GAW report #228

(a)

WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023

GAW Report No. 228

Specific activities:

- QA-1. Provide an operating framework for GAW quality assurance activities and calibration facilities for a specific variable and geographical area of responsibility (world, regional, national).
- QA-2. Coordinate the activities of WCCs and RCCs in the area of their responsibility.
- QA-3. Provide advice and support for the local QA system at individual GAW sites.
- QA-4. Where appropriate, coordinate instrument calibrations and intercomparisons and other measurement activities.
- QA-5. Perform or oversee regular system audits at GAW sites.
- QA-6. Provide training, long-term technical help, and workshops for station scientists and technicians.
- QA-7. Promote the scientific use of GAW data, and encourage and participate in scientific collaboration.

WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023

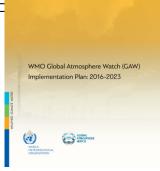
GAW report #228

GAW Report No. 228

5.2.3 World and/or Regional Calibration Centres (WCCs, RCCs)

Specific activities:

- W/RCC-1. Assist Members operating GAW stations to link their observations to the GAW primary standard.
- W/RCC-2. Develop quality control procedures following recommendations by the SAGs, support the QA of specific measurements and ensure the traceability of these measurements to the corresponding primary standard.
- W/RCC-3. Maintain laboratory and transfer standards that are traceable to the primary standard.
- W/RCC-4. Perform regular calibrations (where appropriate), organize comparison campaigns and performance audits at GAW sites using transfer standards in co-operation with the established RCCs.
- W/RCC-5. Provide, in co-operation with the QA/SACs, training and long-term technical help for stations.



Terms of Reference – Station Requirements

Requirements for GAW Regional stations in particular include:

- 1. The station location is chosen such that, for the variables measured, it is regionally representative and is normally free of the influence of significant local pollution sources or at least frequently experiences advection of pollution-free air from specific wind directions.
- 2. There is a commitment by the responsible agency to long-term observations of at least two variables in at least one GAW focal areas (ozone, aerosols, greenhouse gases, reactive gases, UV radiation, precipitation chemistry/total deposition). To address measurements for multiple applications in more than one focal area are recommended.
- Adequate power, air conditioning, communication and building facilities are provided to sustain long-term observations with greater than 90% data capture^d (i.e. <10% missing data).
- 4. Standard meteorological in situ observations (at least temperature, humidity, air pressure, and wind speed and direction), necessary for the accurate determination and interpretation of the GAW variables, are made of known quality.
- 5. Technical staff are trained to operate station equipment.
- 6. GAW observations are of known quality, follow GAW Quality Assurance principles and procedures, linked to the GAW Primary Standard where applicable and use the measurement methods recommended^e by GAW.
- 7. A station logbook (i.e. record of observations made and activities that may affect observations) is maintained and is used in the data validation process.
- 8. The data and associated metadata must be submitted to one of the GAW World Data Centres at least on a yearly basis documenting Year N no later than end of Year N+1. Changes of metadata including instrumentation, traceability, observation procedures, must be reported to the responsible WDC and GAWSIS in a timely manner following the WIGOS metadata standards.
- 9. If feasible, data are submitted to a designated data distribution system in near-real-time.

GAW report #228

GAW Report No. 228

Terms of Reference – Station Requirements

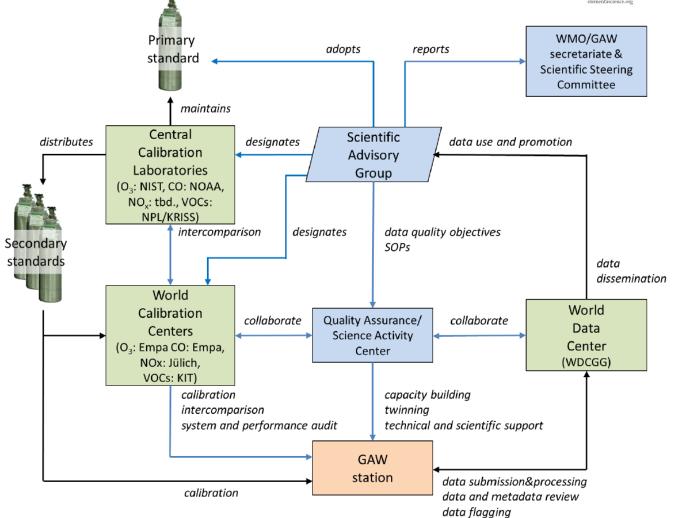
Requirements for Global Stations

These stations primarily observe GAW variables under background conditions, i.e. without permanent significant influence from local pollution sources. In addition to fulfilling the requirement of GAW Regional stations, Global stations must fulfil the following:

- 1. Measure at least two variables in at least three of the six GAW focal areas with the full implementation of GAW's Quality Assurance system (Box 7.1 (A)).
- 2. Have a strong scientific supporting programme with appropriate data analysis and interpretation within the country and, if possible, the support of more than one agency.
 - a. The stations should have a confirmed track record of research campaigns and/or scientific products (within last 3 years) as a Regional station.
 - b. The measurements at the station have been audited or the quality of the measurements has been documented through other means of verification.
 - c. The data from at least two variables in at least three focal areas have been submitted to the respective World Data Centre(s) during at least three years within the data submission period of 1 year after measurement.
- 3. Provide a facility at which intensive campaign research can augment the long-term routine GAW observations and where testing and development of new GAW methods can be undertaken.
- 4. In case the measurements of some GAW variables are occasionally influenced by local pollution, the station shall subject the data to appropriate filter methods to extract the background concentrations and submit both a filtered and an unfiltered time series to the WDC. Also the station metadata on GAWSIS should describe the conditions under which pollution influences may be found and describe the applied filter methods.

WMO Global Atmosphere Watch (GAW)
Implementation Plan: 2016-2023
WORD METEOROLOGICAL ORGANIZATION

GAW Report No. 228

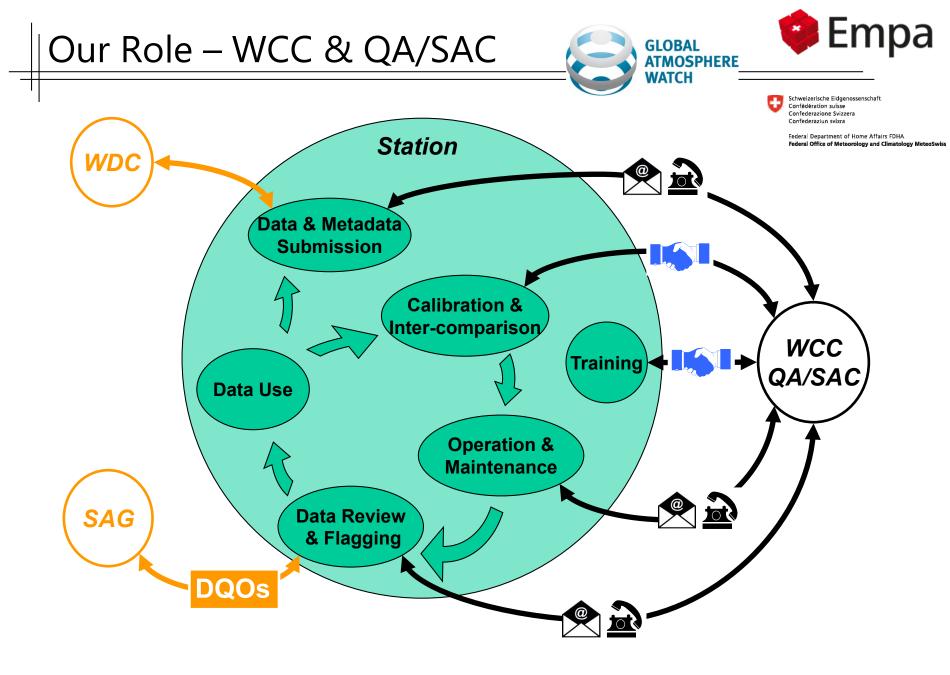

GAW's Quality Assurance System

The Global Atmosphere Watch reactive gases measurement network

Martin G. Schultz^{1*} • Hajime Akimoto³³ • Jan Bottenheim⁴ • Brigitte Buchmann⁵ • Ian E. Galbally⁴ • Stefan Gilge⁷ • Detlev Helmig⁴ • Hiroshi Koide⁴ • Ahastari C. Lewis¹⁸ • Paul C. Novelli¹¹ • Christian Plass-Dülmer⁷ • Thomas B. Ryerson¹¹ • Martin Steinbacher⁵ • Rainer Steinbrecher¹² • Oksana Tarasova¹¹ • Kjetil Torseth¹⁴ • Valerie Thouret¹⁵ • Christoph Zellweger²

Elementa: Science of the Anthropocene * 3: 000067 * doi: 10.12952/journal.elementa.000067 elementascience.org

martin.steinbacher@empa.ch, Laboratory for Air Pollution/Environmental Technology

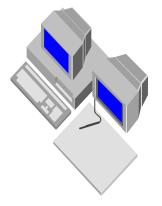


GAW QA System - Objectives and Principles

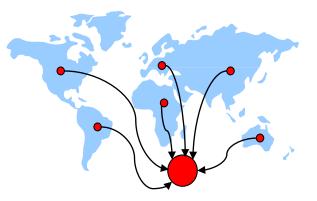
- Primary responsibility for data quality rests with the data originator.
- Primary objectives of GAW QA System
 - To ensure consistency of data residing at WDCs
 - To ensure known and adequate data quality
 - To ensure availability of comprehensive metadata

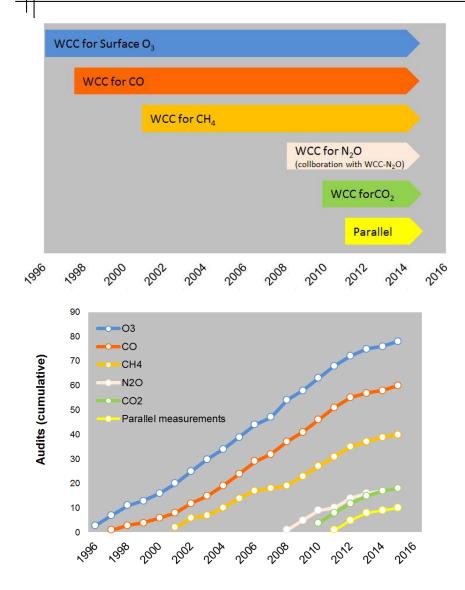
through

- Full support of GCOS monitoring principles
- Network-wide use of only one reference standard and full traceability of all observations
- Definition of data quality objectives (DQOs) and establishment of guidelines for implementation (Measurement Guidelines, Standard Operating Procedures)
- Independent assessments (system and performance audits)
- Timely submission of observations and metadata to WDCs

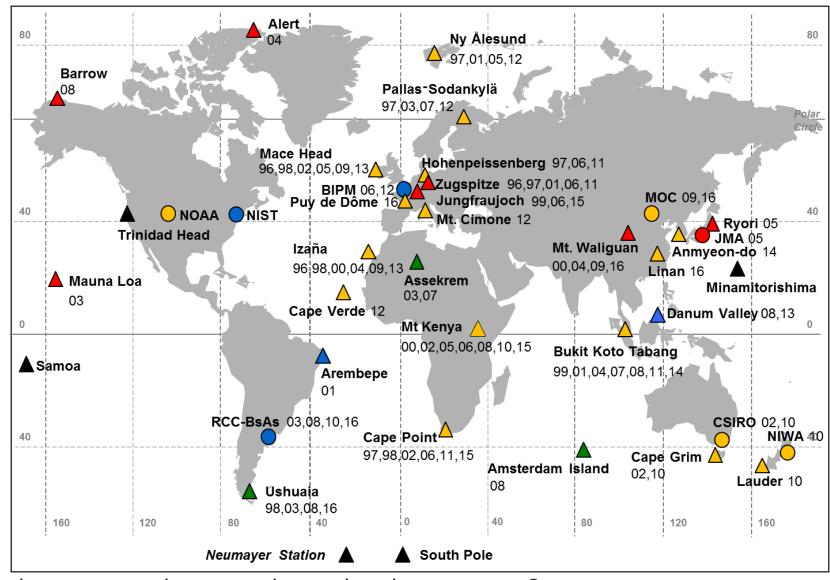


QA/SAC Switzerland

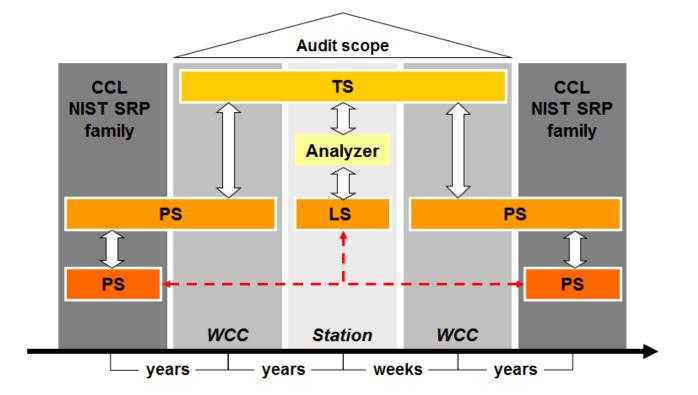

- Scope
 - Variables mandated to WCC-Empa
 - Cross-cutting, system-wide
- Primary Tasks
 - Support and audit the quality control system at Global GAW stations
 - Provide support regarding data quality issues, data submission
 - Contribution to GAW outreach
 - Support of Scientific Advisory Groups
 - Promote use of GAW data
 - Capacity building & twinning
 - Organisation of workshops


- Scope
 - Methane, (nitrous oxide), carbon dioxide
 - Surface ozone, carbon monoxide
- Primary Tasks
 - Ensure traceability of measurements at Global GAW stations to designated GAW Reference Standard
 - Support stations with regards to instrument and/or measurement problems
 - Capacity Building, "1:1"-Training

History of WCC-Empa



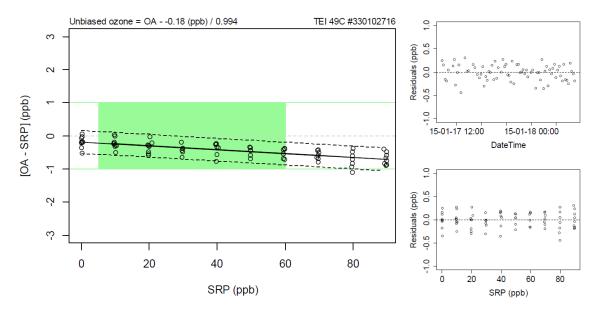
- 1996 Start with surface ozone audits
- 1997 carbon monoxide
- 2000 QA/SAC Switzerland at Empa
- 2001 methane
- 2008 collaboration with WCC-N₂O
- 2010 carbon dioxide
- 2010 MoU BIPM/WMO, Empa designated by WMO as ozone calibration laboratory
- 2011 Parallel measurements with a travelling instrument (CO, CH₄, CO₂)



WCC-Empa Audit Overview, 1996 – 2016

 \triangle O₃/CO/CH₄/CO₂ \triangle O₃/CO/CH₄ \triangle O₃/CO \triangle O₃ \triangle Not yet audited \bigcirc Calibration Facilities # Year(s) of audit(s)

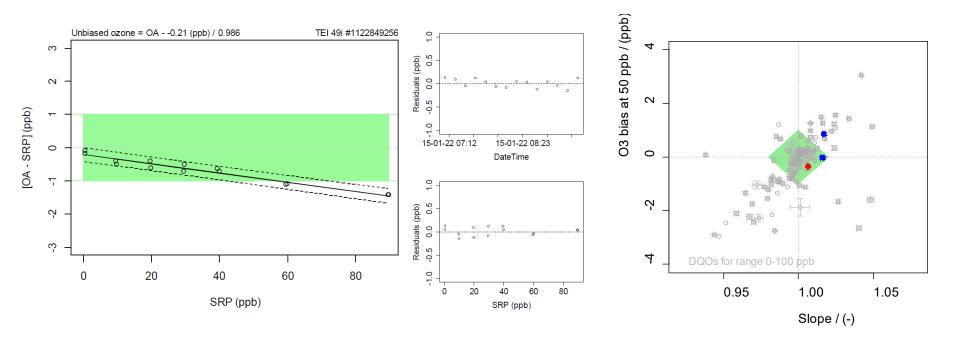
WCC-Empa audits at GAW sites - Traceability



Ozone Measurement Guidelines, GAW Report # 209, 2013

Exemplary Audit Results

Mount Kenya, January 2015


Audit reports publicly available at www.empa.ch/gaw

KMD Nairobi, January 2015

Mount Waliguan, September 2016

Audit reports publicly available at www.empa.ch/gaw

Empa

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office of Meteorology and Climatology MeteoSwiss

Questions ?