

3D virtual histology of thrombi through non-contrastenhanced X-ray propagation-based microCT

Somayeh Saghamanesh ^{1,*}, Daniela D. LaGrange ², Philippe Reymond ², Isabel Wanke ³, Karl-Olof Lövblad ^{2, 4}, Antonia Neels ¹, Robert Zboray ¹

¹ Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland

² Neuroradiology Division, Diagnostic Department, University of Geneva, Geneva, Switzerland

³ Neuroradiology Division, Klinik Hirslanden, Zürich, Switzerland

⁴ Faculty of Medicine, University of Geneva, Geneva, Switzerland

Motivation & Background

- Annually, 15 million people worldwide suffer a stroke, of which 5 million are left permanently disabled ¹.
- A treatment choice for acute ischemic stroke (AIS) is

Mechanical Thrombectomy (MTB)

Characterization of thrombi composition can explain mechanical properties of clot and improve the outcome of MTB.

- The standard method for composition analysis is optical microscopy **BUT**:
 - Only for 2D characterization
 - Limited to small field of view
 - Needs staining (invasive)

Methodology

- X-ray propagation-based phase contrast microtomography :
 - 3D characterization
 - Full field of view
 - No contrast agent (non-invasive)
 - High resolution & phase contrast
- Different dried blood clot samples were analyzed through micro/nanoCT

Results

MicroCT reconstructed slices of two patient clots ²:

A white-looking clot, inset: 3D rendering of red blood cells (RBCs)

MicroCT 3D rendering of a segmented white blood clot volume. The volume

fraction of each Structure can be Calculated ².

F/PI: fibrin/platelets

RBC: red blood cells

Ca: Calcifications

P: porosity

Co-registration of microCT structural information with SEM images ².

Analysis

- Aggregates or individual RBCs are distinguished as hyper-intense signal.
- Fibrin-platelet masses are detected as low to intermediate signals, depending on the compactness.
- > Calcifications appear as glassy opacity.
- XRD (phase) and EDS (elemental) analysis confirm the nano-polycrystaline calcifications in microCT, detected as ground-glass opacity ²:

(a) EDS measurement for Ca, (b) corresponding reconstructed microCT slice, co-registered with the EDS map, (c) XRD measurement.

Conclusion & Outlook

- It was demonstrated that X-ray phasecontrast microCT can provide fibrillary and cellular structures of the whole clot volume without any contrast agent.
- RBC shape and sizes are consistent with high resolution SEM images.
- MicroCT can provide volume fraction of porosity and clot structures, important in the mechanical properties of a clot.

- * Correlation of microCT data with :
- Scanning electron microscopy (SEM)
- > X-ray diffraction (XRD)
- Electron dispersive spectroscopy (EDS)

References

(a) SEM image of a red clot surface, (b, c) zoomed ROIs from (a); (d) 3D rendering of reconstructed microCT volume; (e, f) zoomed ROIs from (d). Red, yellow, and white arrows points to RBCs, structural landmarks, and porosity, respectively. C F/PI and L F/PL are compact and loose F/PI regions.

1- P. B. Sporns, *et al.* Histological Clot Composition is Associated with Preinterventional Clot Migration in Acute Stroke Patients. *Stroke* 50, 2065–2071 (2019).

2- S. Saghamanesh, D.D. LaGrange, P. Reymond, I. Wanke, K-O. Loevblad, A. Neels, R. Zboray. Non-contrastenhanced volumetric assessment of blood clot histology through high-resolution propagation-based X-ray microtomography, under review in *Scientific Reports*. In a large-scale study combined with radiomics analysis, the microCT data can be correlated with clinical CT data to characterize thrombi and help to choose the best MTB strategy for thrombus management.

Acknowledgement

Contact

Somayeh Saghamanesh somayeh.saghamanesh@empa.ch Tel. +41 58 765 44 25