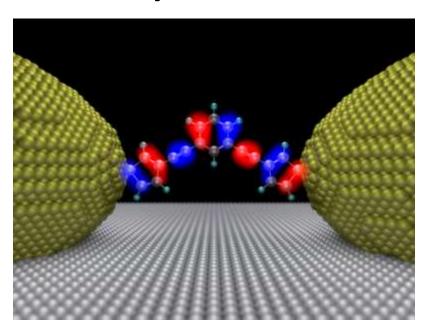
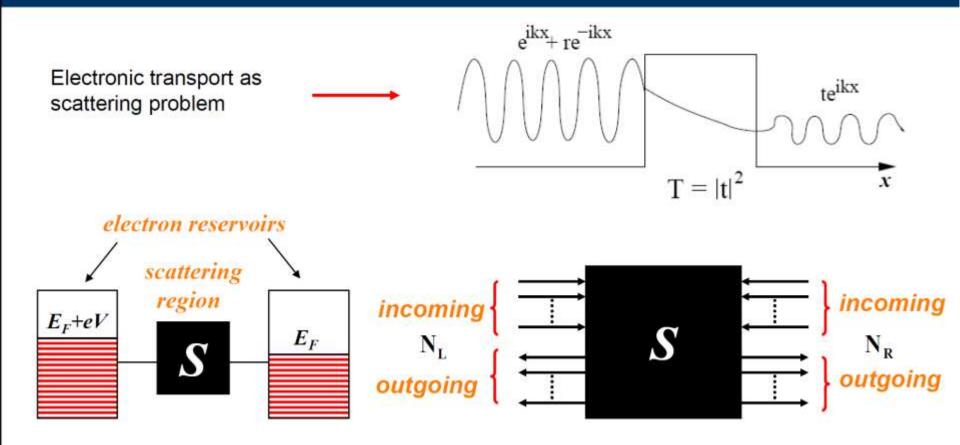


Molecular and carbon-based electronic systems

Lecture 7 - Insights in Density Functional Theory for molecular junctions



Landauer approach to electron transport



$$G = \frac{2e^2}{h}T(E_F)$$

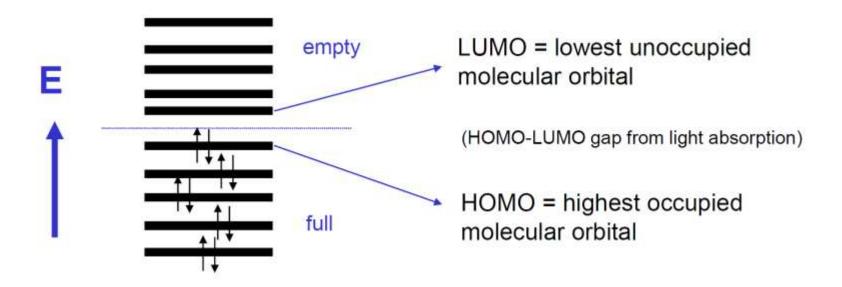
$$G = \text{conductance}$$

$$T(E_F) = \text{transmission at the Fermi energy}$$

molecular energy levels

(isolated) molecule

quantum system with spectrum of discrete energy states (molecular orbitals)



'Particle in a box': molecule is small box box smaller ⇔ levels more spaced (δE > k_BT)

simple one-level model

Analytical expression for the current

$$I(E, V) = \frac{2e}{h} \int T(E, V)[f(E - \mu_2) - f(E - \mu_1)]dE$$

At low T , Fermi functions ≈ Heaviside step functions, and

$$I(V) = \frac{2e}{h} \int_{\frac{-eV}{2}}^{\frac{eV}{2}} T(E, V) dE$$

Using the expressions

$$T(E,V) = \frac{4\Gamma_1 \Gamma_2}{(E - E_0(V))^2 + (\Gamma_1 + \Gamma_2)^2}$$
$$E_F(V) = \frac{eV}{2} \cdot \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

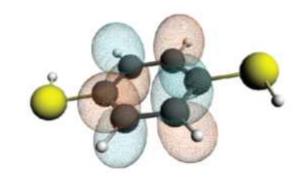
we can write

$$I(V) = \frac{8e}{h} \cdot \frac{\Gamma_L \Gamma_R}{\Gamma_L + \Gamma_R} \left[\arctan \left(\frac{2E_0 + eV\left(\frac{\Gamma_L - \Gamma_R}{\Gamma_L + \Gamma_R} + 1\right)}{2\left(\Gamma_L + \Gamma_R\right)} \right) - \arctan \left(\frac{2E_0 + eV\left(\frac{\Gamma_L - \Gamma_R}{\Gamma_L + \Gamma_R} - 1\right)}{2\left(\Gamma_L + \Gamma_R\right)} \right) \right]$$

3 fit parameters Γ_{1} , Γ_{2} , $E_{0} = E_{0}$ (V)

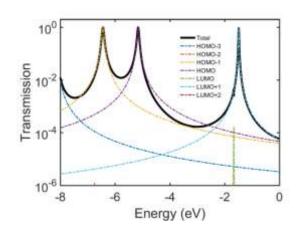
Overview

Quantum chemistry (QC)



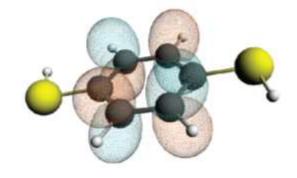
Density functional theory (DFT)

 Non-equilibrium Green's function (NEGF)



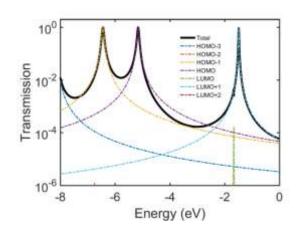
Overview

Quantum chemistry (QC)



Density functional theory (DFT)

 Non-equilibrium Green's function (NEGF)



Schrödinger's Equation

Molecule can be described using the Schrödinger Equation

Time-independent Schrödinger equation (general)

$$\hat{\mathrm{H}}\,\Psi=E\Psi$$

Schrödinger's Equation

Molecule can be described using the Schrödinger Equation

Time-independent Schrödinger equation (general)

$$\hat{\mathrm{H}}\,\Psi=E\Psi$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,J} \frac{Z_J e^2}{|\mathbf{r}_i - \mathbf{R}_J|} - \sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}$$

Very Complex many body Problem !! (Because everything interacts)

Born-Oppenheimer approximation

- Electrons are much lighter, and faster
- Decoupling in the wave function

$$\Psi(\vec{r}, \vec{R}) \approx \Psi_e(\vec{r}) \Psi_n(\vec{R})$$

Nuclei described as constant external potential

Born-Oppenheimer approximation

- Electrons are much lighter, and faster
- Decoupling in the wave function

$$\Psi(\vec{r}, \vec{R}) \approx \Psi_e(\vec{r}) \Psi_n(\vec{R})$$

- Nuclei described as constant external potential
- Still numerically intractable

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,J} \frac{Z_J e^2}{|\mathbf{r}_i - \mathbf{R}_J|}$$

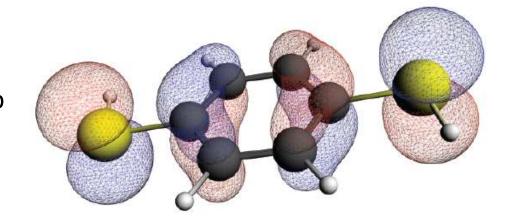
Quantum chemistry calculations

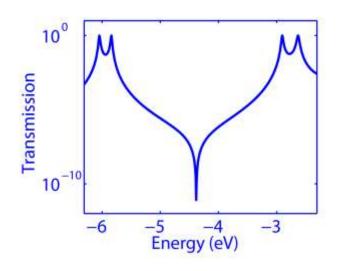
Electronic structure

- Numerical renormalization group
- Configuration interaction
- Hartree Fock
- Density functional theory
- Hückel method

Transport

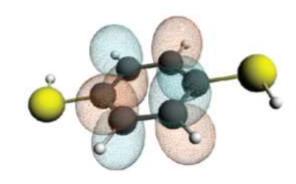
- NEGF
- GW





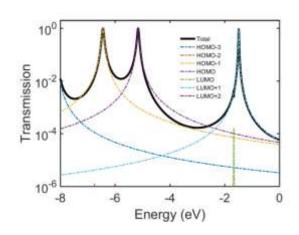
Overview

Quantum chemistry (QC)



Density functional theory (DFT)

 Non-equilibrium Green's function (NEGF)



- Density functional theory (DFT) is an exact reformulation of many-body quantum mechanics in terms of the electron density rather than the wave function
 - →equivalent independent single-particle problem

- Density functional theory (DFT) is an exact reformulation of many-body quantum mechanics in terms of the electron density rather than the wave function
 - →equivalent independent single-particle problem
- The wave-function is a unique functional of the density (1e Hohenberg-Kohn theorem, 1964)
- All system properties are governed only by the ground-state density.
- Nobelprize in 1998!

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2e Hohenberg-Kohn theorem, 1964)

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2e Hohenberg-Kohn theorem, 1964)

$$E_{KS} = T_s[n] + \int d^3r \ V_{\text{ext}}(\mathbf{r})n(\mathbf{r}) + E_H[n] + E_{II} + E_{xc}[n]$$

The density n(r) which minimizes E[n(r)] is the ground-state density, and minimization of this functional alone is enough to fully determine the exact ground-state energy and density n₀(r).
 (2e Hohenberg-Kohn theorem, 1964)

$$E_{\rm KS} = T_s[n] + \int {\rm d}^3 r \ V_{\rm ext}(r) n(r) + E_H[n] + E_{\rm II} + E_{\rm xc}[n]$$
 Kinetic energy lon-lon interaction Electron-nuclei interaction Electron interaction Exchange + correlations

$$E_H[n] = \frac{1}{2} \int d^3r \int d^3r' \frac{n(\boldsymbol{r})n(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

Kohn-Sham equations

• But T_s and E_{XC} are unknown. How to find T_s?

Kohn-Sham equations

- But T_s and E_{XC} are unknown. How to find T_s ?
- Kohn and Sham proposed to model electrons as noninteracting particles that generate the same density as the interacting particles (mean field, 1965)

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Local density approximation (LDA) : uniform electron gas: $E_{xc}[
ho]$ Generalized gradient approximation (GGA) : $E_{xc}(
ho, \nabla
ho)$

Hybrid (B3LYP): including some HF for exchange

Dispersion/long-range corrected functionals

Exchange-correlation (XC)

• All we know about the functional E_{xc} is that it exists, however, its form is unknown.

Local density approximation (LDA) : uniform electron gas: $E_{XC}[\rho]$ Generalized gradient approximation (GGA) : $E_{XC}(\rho,\nabla\rho)$ Hybrid (B3LYP) : including some HF for exchange Dispersion/long-range corrected functionals

→ As the XC functional is not exact, electron exchange and correlations are not taken properly into account.

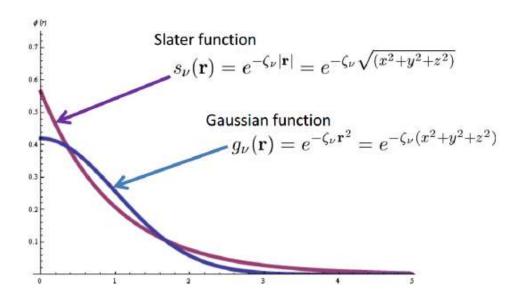
Basis set used to describe orbitals

 A basis set is a set of basis functions which are combined in linear combinations to create molecular orbital wavefunctions.

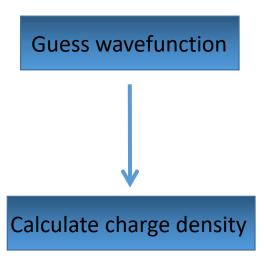
Basis set used to describe orbitals

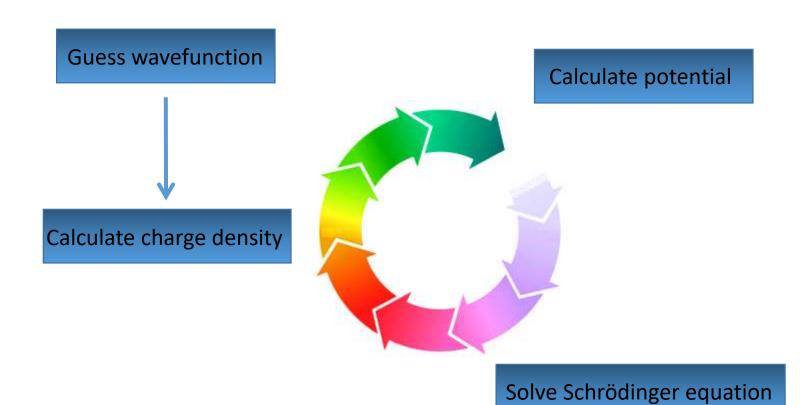
 A basis set is a set of basis functions which are combined in linear combinations to create molecular orbital wavefunctions.

 Basis set can be any type of set of functions: atomic orbitals, plane waves, ...



Guess wavefunction

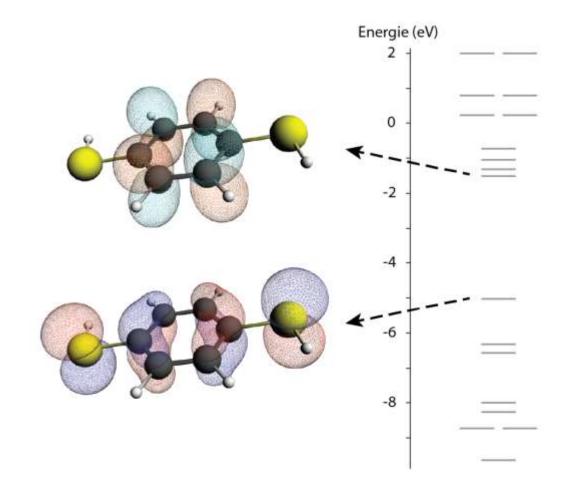






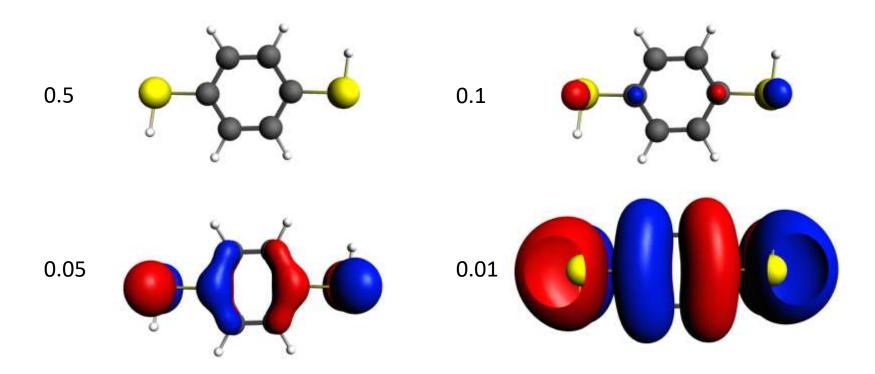
DFT Results

- DFT provides the energy of the molecular orbitals
- DFT provides the wave-functions of the molecular orbitals



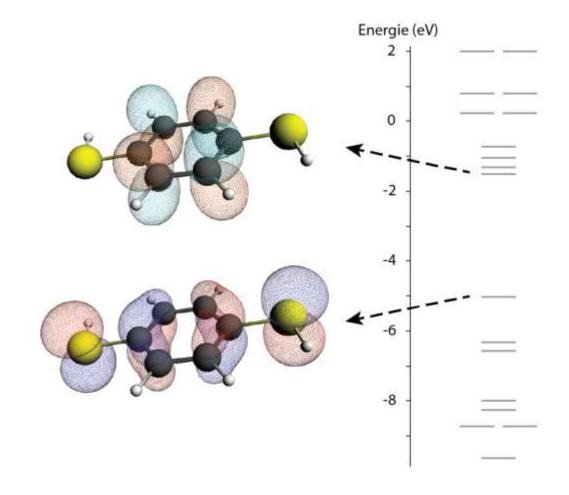
Molecular orbitals

- # electrons per cubic ångström
- Positive and negative part of the wave function



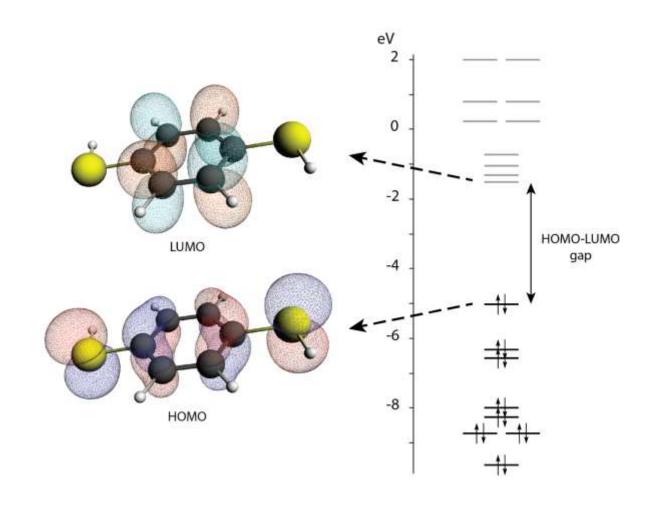
DFT Results

- DFT provides the energy of the molecular orbitals
- DFT provides the wave-functions of the molecular orbitals
- Molecular Orbitals are linear combinations of basis-set functions



DFT Results

- Orbitals are populated from the bottom (Aufbau principle)
- Each orbital can be occupied by at most two electrons (Pauli principle)
- HOMO/LUMO



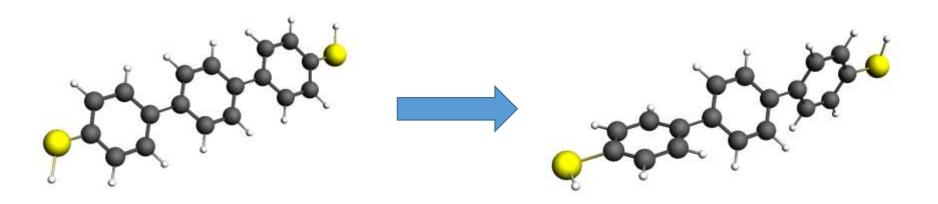
Summary DFT

- Density functional theory is an exact reformulation of many-body quantum mechanics in terms of the density rather than the wave function
- DFT provides electron density and hence the wave function
- XC functional unknown : electron exchange and correlation effects are approximated
- The result is as good as the functional/basis-set you are using

Geometry optimization

Look for lowest energy configuration

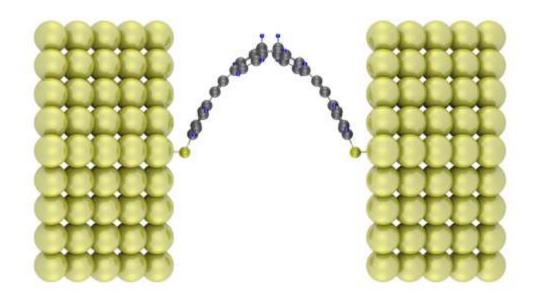
Based on energy gradient



Geometry constraints

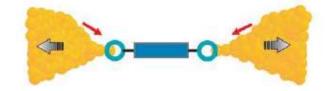
Fix specific atoms or blocks of atoms

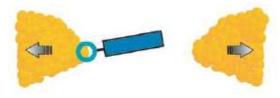
• Fix specific bond length, angles etc...

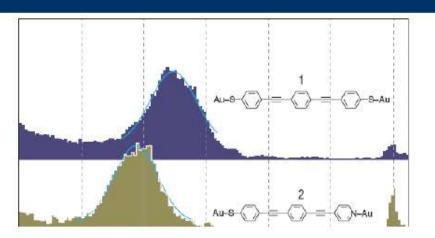


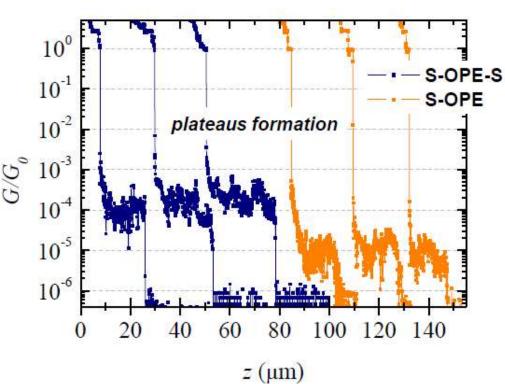
importance of intermolecular interactions

OPE: oligo (phenylene ethynilene)

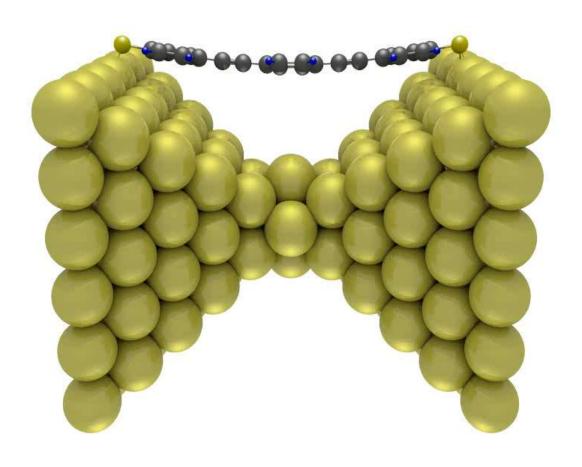




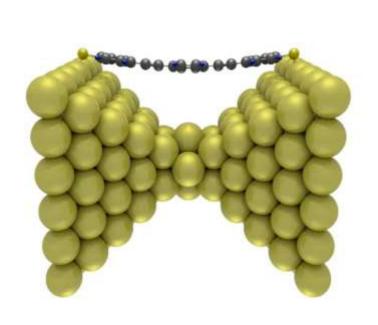


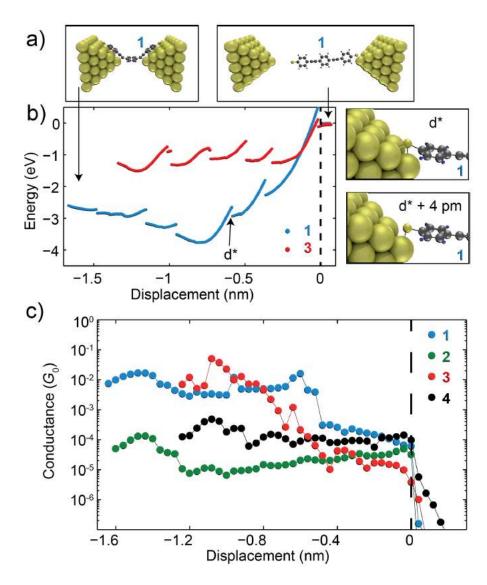


Geometry constraints



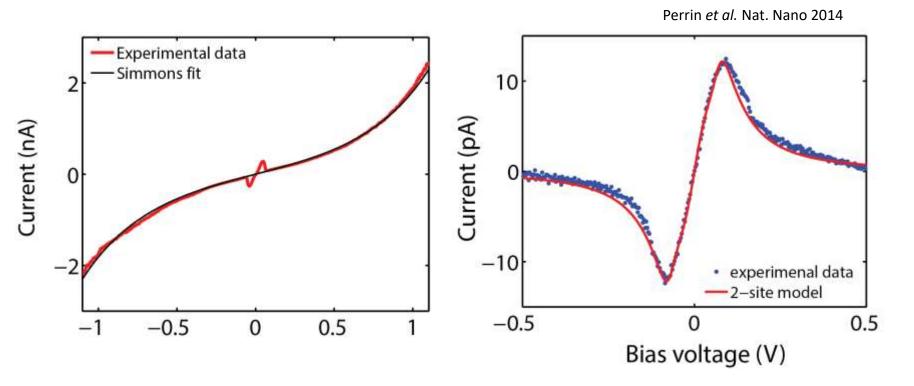
Geometry constraints





Perrin *et al.* Beilstein J. of Nanotech. 2015

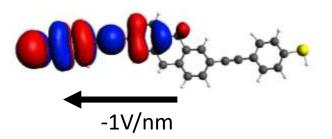
Electric fields

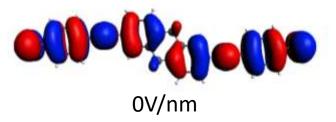


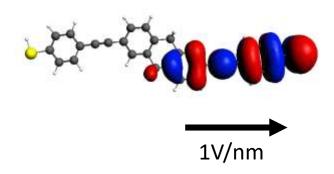
- High bias is dominated by single barrier tunneling
- Experimental data can be fitted with 2-site model

Electric fields

An electric field can be added





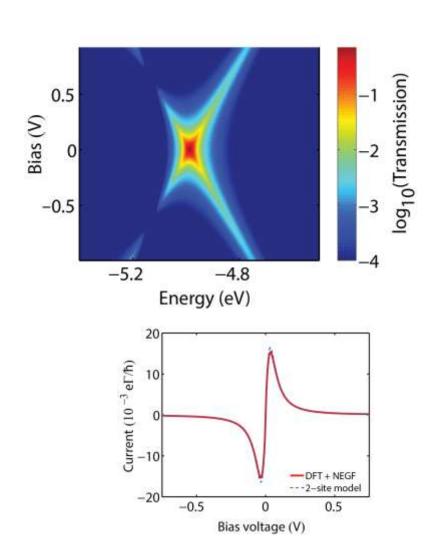


Electric fields

An electric field can be added

 Bias dependence transmission

Useful to calculate IVs

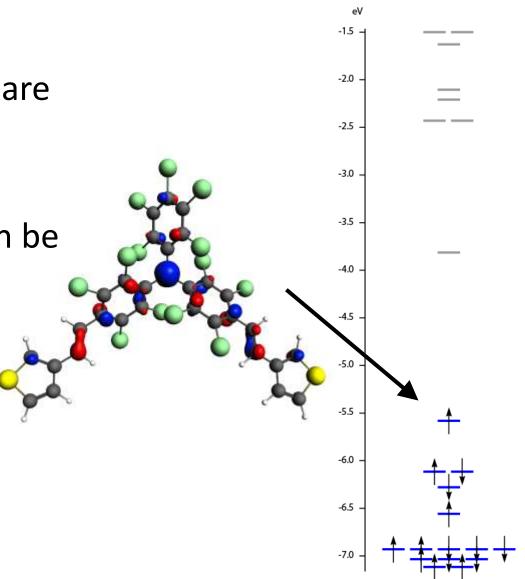


Spin resolved calculations

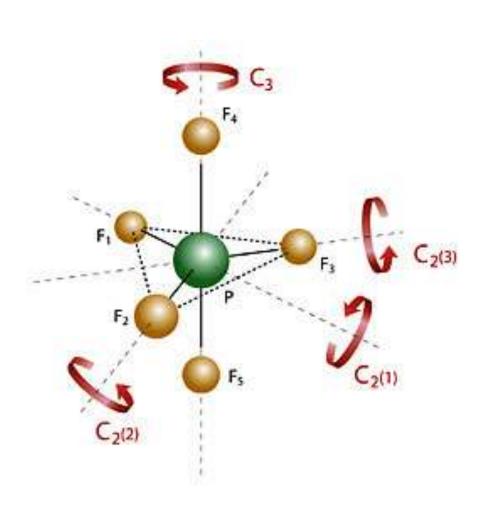
 Spin up and down are treated separately

Spin unbalance can be added

Add charge to molecule



SCF tricks/speed-up - Symmetry



- Enforce symmetry in geometry optimization (reflection, rotation,...)
- Easier to converge
- Speeds up the calculations

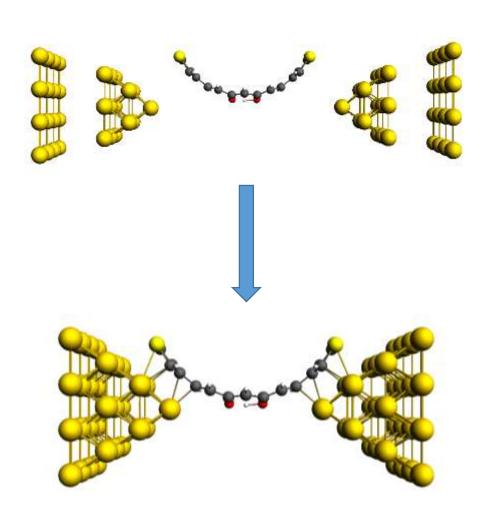
SCF tricks/speed-up – Fragments

 Fragments are first converged separately

Provides better guess for initial density

SCF tricks/speed-up – Fragments

- Fragments are first converged separately
- Provides better guess for initial density
- Allows for convergence which otherwise would be difficult/impossible
- Speeds up convergence



SCF tricks/speed-up — Frozen core

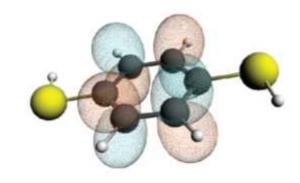
- Deep-core atomic orbitals change very little upon bond formation
- DFT can 'freeze' the core electrons of atoms

SCF tricks/speed-up — Frozen core

- Deep-core atomic orbitals change very little upon bond formation
- DFT can 'freeze' the core electrons of atoms
- Reduces the size of the variational basis set and speeds up calculations
- Core electrons taken into account when calculating energy

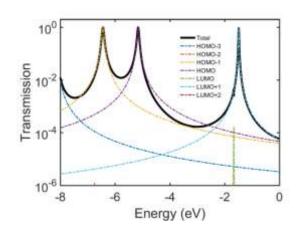
Overview

Quantum chemistry (QC)



Density functional theory (DFT)

 Non-equilibrium Green's function (NEGF)



NEGF

For charge transport, time dependent Schrödinger equation needs to be solved

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\hat{H}\Psi({f r},t)$$

NEGF

For charge transport, time dependent Schrödinger equation needs to be solved

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\hat{H}\Psi({f r},t)$$

After a lot of math, the transmission is given by

$$T(\epsilon) = \text{Tr} \{ \mathbf{\Gamma}_L(\epsilon) \mathbf{G}^r(\epsilon) \mathbf{\Gamma}_R(\epsilon) \mathbf{G}^a(\epsilon) \}$$

G^r is the retarded Green's function

$$\boldsymbol{G}^{r}(\epsilon) = \left[\epsilon \boldsymbol{S} - \boldsymbol{H} - \boldsymbol{\Sigma}_{L}^{r}(\epsilon) - \boldsymbol{\Sigma}_{R}^{r}(\epsilon)\right]^{-1}$$

NEGF

$$G^{r}(\epsilon) = \left[\epsilon S - H - \Sigma_{L}^{r}(\epsilon) - \Sigma_{R}^{r}(\epsilon)\right]^{-1}$$

 $\varepsilon \rightarrow$ Energy incoming electron

S → Overlap matrix (DFT)

Overlap of basis-set functions (atomic orbitals).

If orthonormal basis, S is identity matrix

 $H \rightarrow$ Fock matrix (DFT)

Eigenvalues: Orbital energies

Eigenvectors: Orbital shape, linear combination atomic orbitals

 $\Sigma \rightarrow$ Self energy matrix (DFT/arbitrary)

$$\Sigma_{L,R}^{r}(\epsilon) = \Lambda_{L,R}(\epsilon) - \frac{\mathrm{i}}{2}\Gamma_{L,R}(\epsilon)$$

Wide-band limit

Wide-band limit (WBL) assumes self-energy is energy independent

$$\Sigma_{L,R}^r = \Lambda_{L,R} - \frac{\mathrm{i}}{2} \Gamma_{L,R}$$

and neglects the real part

$$\Sigma_{L,R}^r = -\frac{\mathrm{i}}{2} \Gamma_{L,R}$$

Wide-band limit

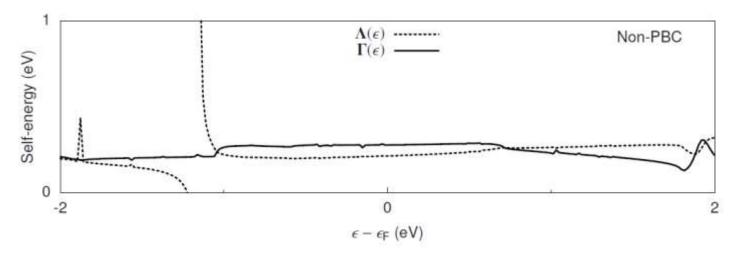
Wide-band limit (WBL) assumes self-energy is energy independent

$$\Sigma_{L,R}^r = \Lambda_{L,R} - \frac{1}{2} \Gamma_{L,R}$$

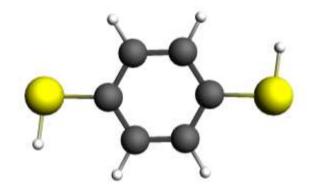
and neglects the real part

$$\mathbf{\Sigma}_{L,R}^r = -\frac{\mathrm{i}}{2}\mathbf{\Gamma}_{L,R}$$

For gold this is a not-so-crazy assumption



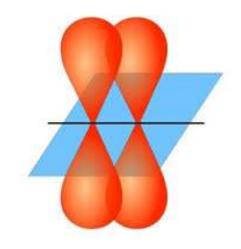
- 1. Take fock matrix from DFT (H)
- 2. Take overlap matrix from DFT (S)
- 3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.



4. Compute transmission

$$T(\epsilon) = \text{Tr}\{\Gamma_L(\epsilon)G^r(\epsilon)\Gamma_R(\epsilon)G^u(\epsilon)\}\$$

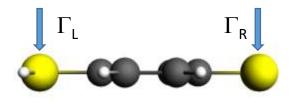
- 1. Take fock matrix from DFT (H)
- 2. Take overlap matrix from DFT (S)
- 3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.



4. Compute transmission

$$T(\epsilon) = \text{Tr}\{\Gamma_L(\epsilon)G^r(\epsilon)\Gamma_R(\epsilon)G^u(\epsilon)\}\$$

- 1. Take fock matrix from DFT (H)
- 2. Take overlap matrix from DFT (S)
- 3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.

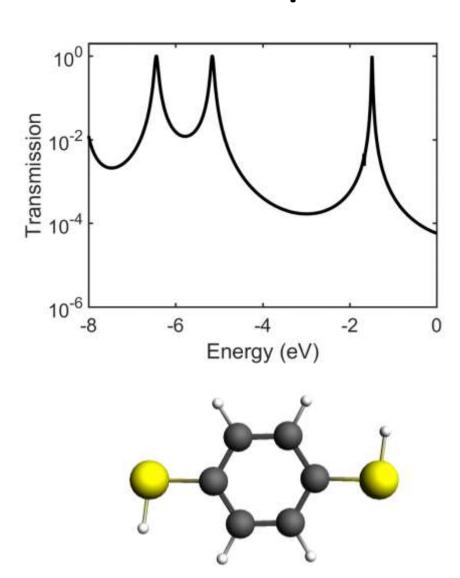


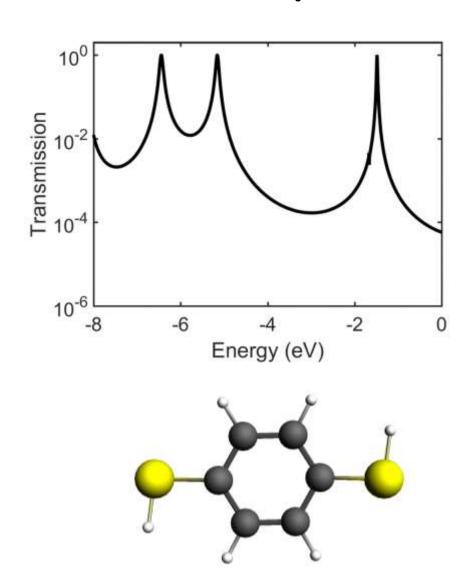
4. Compute transmission

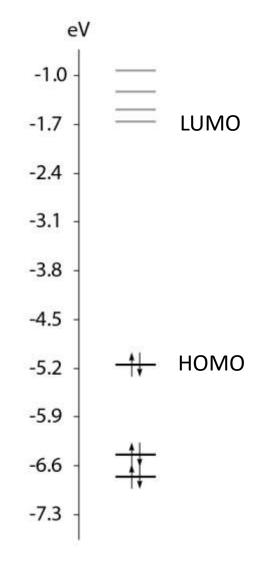
$$T(\epsilon) = \text{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^a(\epsilon) \}$$

- 1. Take fock matrix from DFT (H)
- 2. Take overlap matrix from DFT (S)
- 3. Chose were to inject charge and construct $\Gamma_{\rm R,L}$ accordingly.
- 4. Compute transmission

$$T(\epsilon) = \text{Tr} \{ \Gamma_L(\epsilon) G^r(\epsilon) \Gamma_R(\epsilon) G^a(\epsilon) \}$$

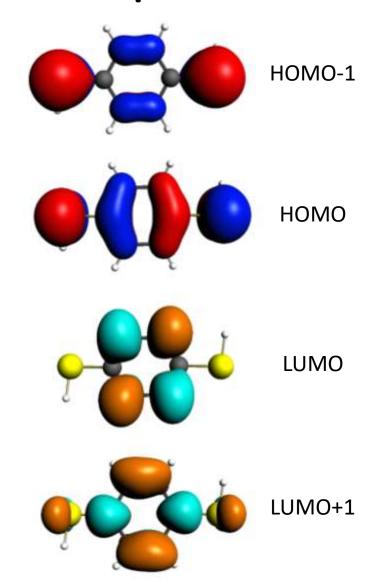




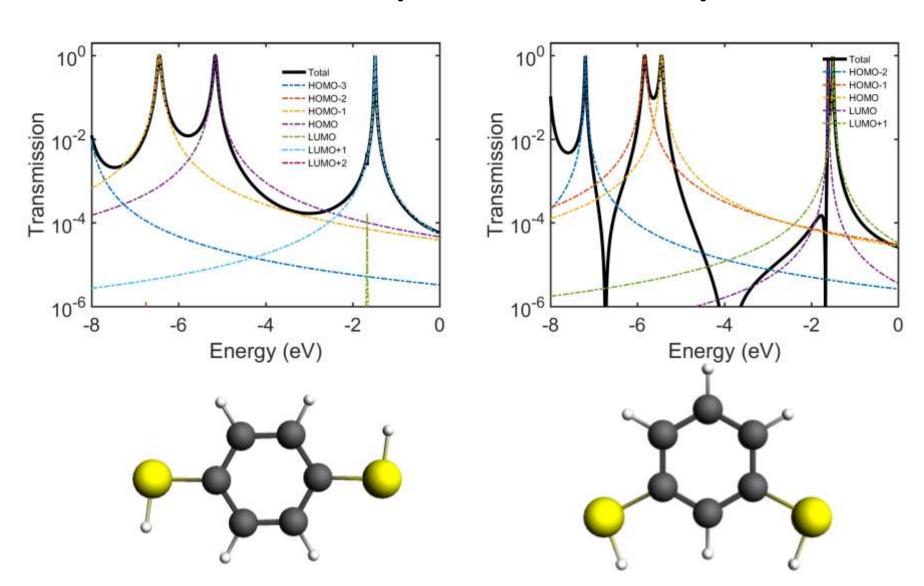


Orbital decomposition - amplitude

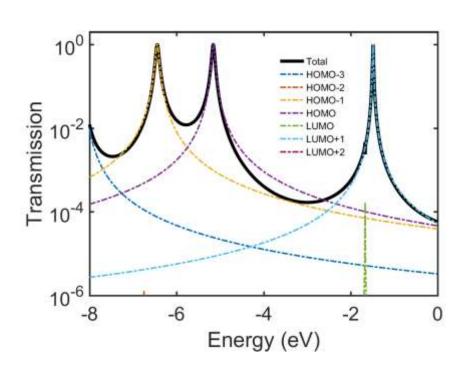


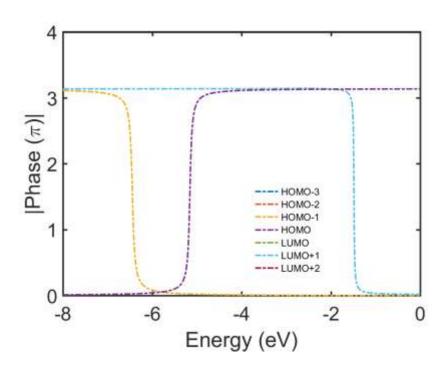


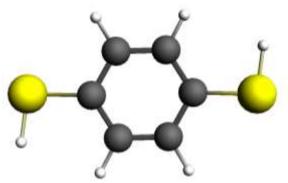
Orbital decomposition - amplitude



Orbital decomposition - phase



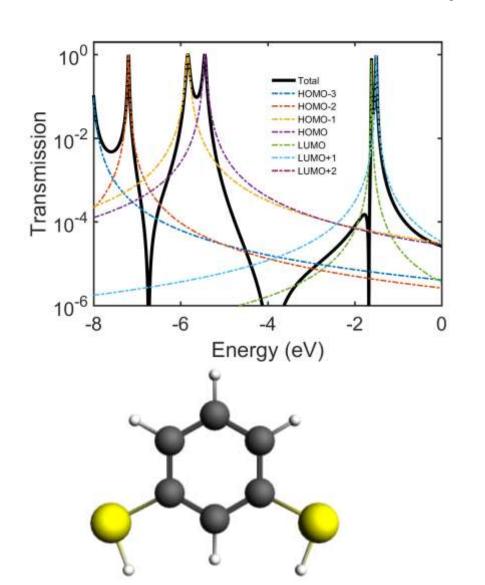


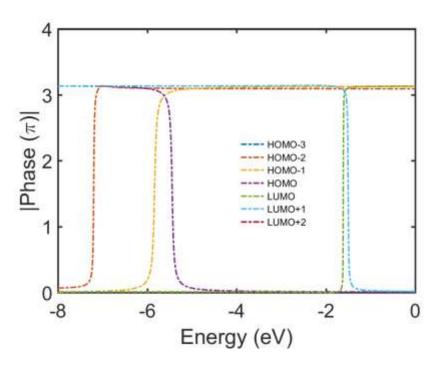


Phase is angle between real and complex part of the transmission

 π -phase shift at energy of corresponding orbital

Orbital decomposition - phase



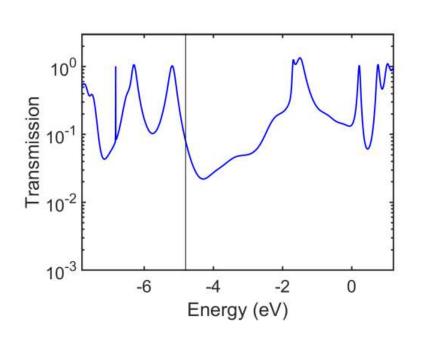


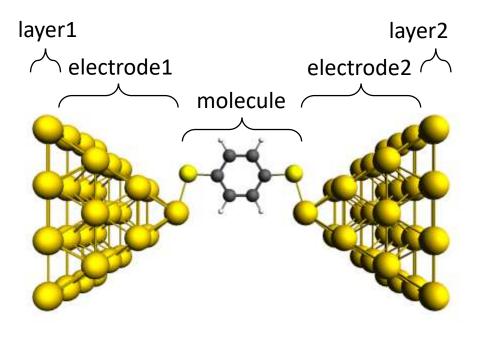
Phase is angle between real and complex part of the transmission

Destructive interference occurs when amplitude is the same, but π -phase shift

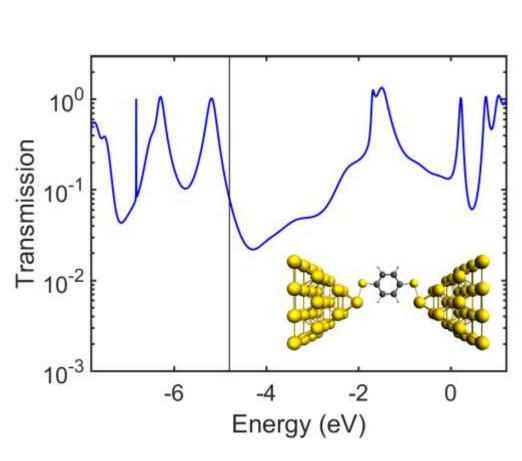
Transport with gold electrodes

 Couple to atomic orbitals of gold of outermost layer instead of S atoms.





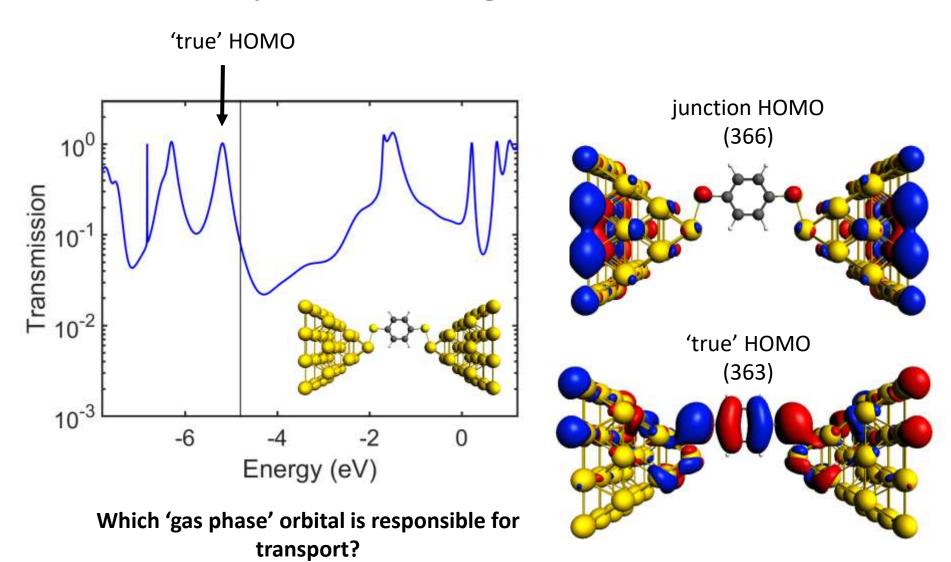
Transport with gold electrodes



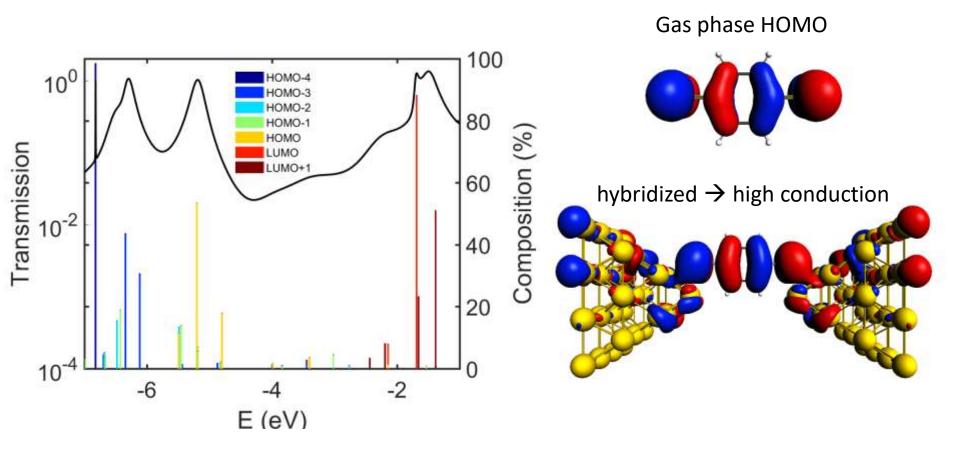
With so many orbitals, how to identify relevant ones?



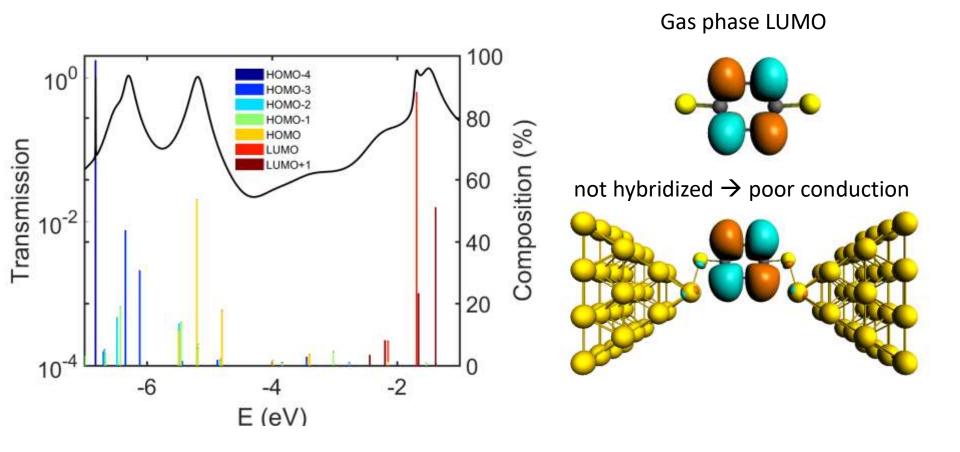
Transport with gold electrodes



Orbital projections

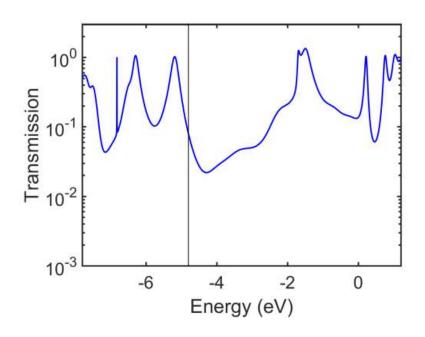


Orbital projections



How does this compare to experiments?

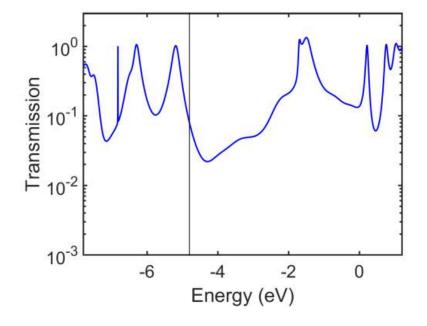
Bandgap underestimated, conductance overestimated



How does this compare to experiments?

Bandgap underestimated, conductance overestimated

- DFT does not properly account for addition/removal of charge
- 2. Formation of image-charges in the electrodes upon addition/removal of charge not taken into account

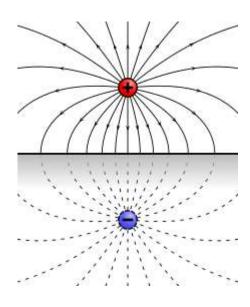


DFT + Σ

- Correct HOMO and LUMO by performing a calculation for ±1e
 - → increases bandgap a lot

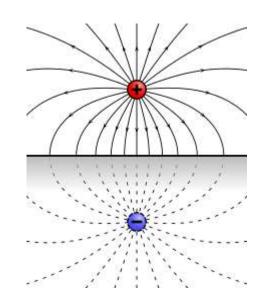
DFT + Σ

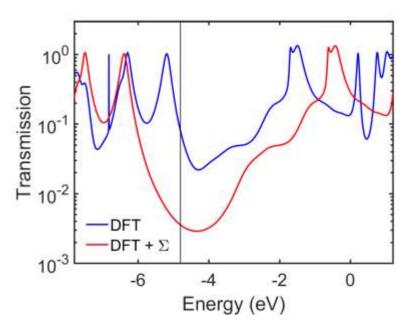
- Correct HOMO and LUMO by performing a calculation for ±1e
 - → increases bandgap a lot
- Correct for image-charge formation in electrodes (classical electrostatics)
 - → reduces bandgap a bit



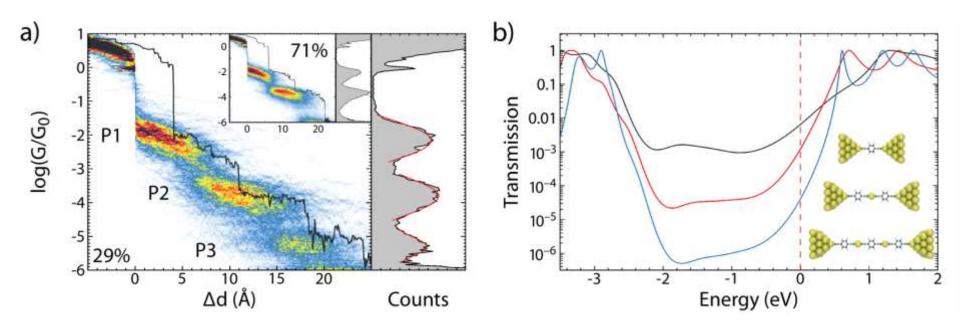
DFT + Σ

- Correct HOMO and LUMO by performing a calculation for ±1e
 - → increases bandgap a lot
- Correct for image-charge formation in electrodes (classical electrostatics)
 - → reduces bandgap a bit
- Shift for (un)occupied levels implemented as scissor operator
- Significantly improves agreement with experimental conductance values



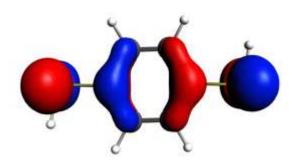


Some examples...



Summary

DFT provides electron density and hence the wave function



- NEGF gives you the electron transmission function through the system
- DFT+NEGF is very useful to understand experimental data
- Results should be interpreted with care

