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1 Machine vision 
We describe a machine vision measurement head that is used to monitor the mandrel position in 
production of superconducting cables. Two cameras are orthogonally aligned, viewing different sec-
tions of the cylindrical part of the mandrel. The use of telecentric lenses obviates the need for re-
calibration after the replacement of mandrel. All parameters of rigid body motion are obtained in lin-
ear theory by using a multivariate least squares fit procedure on dynamically corresponded sets of 
target points that vary due to obstruction by rotating wires. A rigorous analysis of measurement un-
certainty is given. 1 
 

2 Hardware description 

2.1 Camera, lenses and illumination 
B/W CCIR-cameras with standard 768 x 512 pixel resolution have been chosen. In order to minimise 
the size of the measurement system, compact C-mount cameras were purchased. They can be trig-
gered and genlocked. Chipsize was chosen to be of 1/3“ equivalent. The high lateral resolution allows 
to use smaller and hence more compact and lightweight lenses. A field of view (FOV) of6 x 8 mm2 
was aimed at. As ambient light can strongly vary, an auto gain control (AGC) is mandatory. A shut-
tered operation minimises blur due to the movement of the wires in front of the mandrel.  
 
The FOV requires a magnification of 0.6X when using a camera chip size of 3.6 x 4.8 mm2. A working 
distance of 100 mm is kept in order to be in safe distance to the production site and at the same time 
achieving stable images. The objective is a compact and lightweight telecentric C-mount lens. Magni-
fication is independent of object distance within the entire depth of focus. Hence, there is no need to 
recalibrate the lateral resolution after repositioning the system or focusing the camera. 
The lens has no adjustable features, so mismanipulation or accidental mistuning are impossible. As 
the aperture is fixed, the camera must adjust itself to the varying illumination condition through its 
AGC capability. As no focus ring is provided on the lens, focussing is performed through positioning 
of the camera-lens system with respect to the object surface by using a translation stage.  
 
The camera and the lens described above result in a scaling of 

horκ = (0.01038± 0.00001) mm/x-pixel 

vertκ = (0.01042± 0.00001) mm/y-pixel 

and hence a field of view (FOV) of 6.00x7.98 mm2. 
 
The depth of focus 2f is compatible with the curvature of the test object.  
 
An illumination with 5mm white light LED and 45°-illumination cone is integrated to the camera cas-
ing. Due to space restrictions, a ring-illuminator is too large. We therefore have designed a 4-LED 
illumination placed in pairs on each side of the objective (Figure 1).  
 

                                                      
1 E. Hack, D. Leroy, Camera based monitoring of the rigid body displacement of a mandrel in superconduct-
ing cable production, Opt. Las. Eng. 43 (2005)3-5, 455–474 
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Figure 1: Front view of camera, casing and illumination block with four LEDs. 

2.2 Targets 
The targets (Figure 2) are used to define measurement points on the object surface. They are fabricated to 
customer specification and printed onto a self-adhesive white foil of thickness 0.1 mm. The target includes a 
scaling (1-50 mm) in order to allow for the determination of the axis-offset . 

 
Figure 2: Target with scaling and reference grid (left). Test object with target (right). 
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2.3 Mechanical mounting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Mechanical mounting of the two camera units to the breadboard, schematic.  
 

 

Figure 4: Measurement head with breadboard, two cameras in their casing, electrical connector box, and mounting tube 
attached with angle brackets. 
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3 Description of the evaluation algorithm 

3.1 General 
The displacement of the mandrel can be parameterised as a rigid body displacement of a cylinder with six 
degrees of freedom (section 5.2). The target displays a grid of 1mm squares the crossing points of which 
serve as measurement points. The image analysis localises the camera co-ordinates of these points by im-
age correlation. Using a telecentric lens these camera co-ordinates are the parallel projection of the target 
points along the line of sight (i.e. the optical axis of the camera) onto the CCD sensor plane.  
Once the co-ordinates of the measurement points are known, they are compared to the reference position of 
the test object in order to calculate the displacement values. Note that the sets of visible target points may 
vary from image to image due to the wires crossing the field of view during production.  
Due to mounting inaccuracies, we cannot assume that the optical axes of the cameras intersect the mandrel 
cylinder axis. Hence, we must assume an axis-offset and determine its value before evaluation.  
In order to take into account the two sets of points from both cameras, a unified evaluation procedure based 
on a multivariate least-squares analysis is applied. The basic equations relating the displacement values to 
the rigid-body parameters are derived. The mathematics of the least squares fit of the rigid body parameters, 
taking into account the unified set of measured points is explained. Finally, a measurement uncertainty 
analysis is performed. 

3.2 Rigid body displacement  
The separation of a rigid body displacement into translation and rotation is not unique. Hence, we may define 
an arbitrary point as the centre of rotation. If we choose the origin of the co-ordinate system to be this refer-
ence point, the rigid body displacement can be written as 
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We define the intersection of the plane spanned by the two camera optical axes and the cylinder axis as the 
origin of the co-ordinate system.  
A point P on the surface of the cylindric test object can be parameterised by (r, φP, zP). The z-co-ordinate 
remains unchanged in any parallel projection (as with telecentric lenses) onto a plane parallel to the z-axis. 
By definition, the cameras point onto the y-axis at an angle of φU (ca. 45° from x-axis) and φD (ca. 135° from 
x-axis). They may, however, be off-centre from the z-axis by an amount sU and sD, respectively, called axis-
offset. This off-axis observation is vital to achieve a good separation of the various components of rigid body 
displacements.  
U and D designate indices for the upper camera (UP) and lower camera (DOWN), respectively.The surface 
point co-ordinates can be reconstructed from the camera co-ordinates by  
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The same formulae apply for the lower camera D, when respecting the sign of γ. While the camera co-
ordinates are readily read from the pixel position, the offset s from the cylinder axis has to be determined 
from the actual field of view. 
 
To express the displacement of a target point in the camera image we have in terms of the parameters of 
rigid body displacement  

( ) ( ) UyzxUxzyU
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Every measurement point provides two equations for the determination of the six parameters of rigid body 
displacement.  
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3.3 Least-squares evaluation of the parameters of rigid body displacement 
The sum of residual squares is to be minimised by choosing the appropriate values for the parameters. The 
sums extend through the entire set of measurement points NU and ND of the upper and lower camera, re-
spectively. We use unweighted sums, i.e. we assume all measurement points to have the same uncertainty. 
To find the minimum of the sum, all partial derivatives with respect to the six parameters (A0, A1, ..., A5) of 
rigid body displacement 

( )trzz ttt −+−+= δδδA  (4) 

are set equal to zero. The least squares procedure finally leads to the matrix equation 
YAN =  (5) 

with 
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The square brackets are short for the respective summations through the number of measurement points for 
cameras U and D. The normal matrix is symmetric and given by 
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Eq. (5.35) is solved for A by using the inverse of this normal matrix N. 
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Figure 5 shows the result of a calibration measurement performed for pure translations of ± 0.1 mm along x, 
y, and z-direction. Note that the noise in tx is remarkably higher than in tz or ty, and correlated with αz. This 
fact is substantiated by the uncertainty values given by the elements of the covariance matrix below. 
 

 

 
Figure 5: Calibration of the translation measurements (top). Note that the rotation values are not substantially affected 

(bottom)  

 

3.4 Measurement uncertainty 
All measurement values have uncertainties associated to the identification of the target points. However, the 
dimensionless camera co-ordinates have themselves measurement uncertainties. As is known, we may cal-
culate from them an equivalent uncertainty of the displacements of the camera co-ordinates, which has to 
be added to the identification uncertainty according to the error propagation rules. Further, we must take into 
account the non-ideal real situation. This is dominated by geometrical uncertainties.  

),(),(),()( 2222 geometryuequivalentuidentuu ξξξξ Δ+Δ+Δ=Δ  (8) 

and similar for the displacement ηΔ . 
The estimation of the measurement uncertainty for the translation and rotation values is therefore made step 
by step, according to the ISO “Guide to the Expression of Uncertainty in Measurement”. 
• Measurement uncertainty of the displacement measurement value determination due to the correlation 

algorithm. 
• Equivalent uncertainty due to  

• Uncertainty of the relative camera co-ordinates, comprising uncertainty of 
• Camera co-ordinates 
• Axis offset s 
• Radius r 

• Geometrical uncertainty  
• Uncertainty of camera angle φ 
• Non-coplanarity of the two cameras 
• Temperature effects 
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Covariance matrix 
The measurement uncertainties (variances and covariances) are given by the inverse of the normal matrix, 
multiplied by the variance of the uncertainty of a single measurement value. We assume that all measure-
ment uncertainties are equal  A typical normal matrix obtained during the calibration of the system is: 
 

 
Figure 10: Values of the normal matrix coefficients obtained during calibration.  

In this case, there are 35 and 32 target points identified in the images of the lower and upper camera, re-
spectively. The corresponding covariance matrix in the back transformed parameters, is  
 

Parameter Back transformed Covariance Matrix 
   

tz 1.882 0.044 -0.052 0.014 -2.107 0.390 
tx 0.044 14.680 0.810 11.066 -0.049 0.011 
ty -0.052 0.810 0.076 0.614 0.059 -0.011 
δz 0.014 11.066 0.614 8.359 -0.016 0.003 
δx -2.107 -0.049 0.059 -0.016 2.381 -0.427 
δy 0.390 0.011 -0.011 0.003 -0.427 0.141 

 
The variance of the parameter tx (i.e. the diagonal element of the covariance matrix) is higher by a factor of 
up to fifteen than that of the single measurement value. Further, there is strong correlation between tx and δz 
as well as some correlation between tz and δx. 
Since it is not reasonable to make an uncertainty analysis for each measurement, we assume that the ideal-
ised covariance matrix is valid for all measurements and that it roughly scales with the number of detected 
points.





 

 

 

Compilation of measurement uncertainties for the two components of camera coordinate displacements 

Influence parameter Formula 
Assumptions  

and values 
Contribution to 
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Camera angle )(),( 2222 ϕαϕξ uru r=Δ  ( )22 17)( mradu =ϕ      2  x 10-6  mm2      5  x 10-6  mm2 

Temperature change ( )22 006.0),( mmetemperaturu =Δξ  u(T)=5°C   36  x 10-6  mm2    36  x 10-6  mm2 

Total )(2 ξΔu    52  x 10-6  mm2    78  x 10-6  mm2 

 

Influence parameter Formula 
Assumptions  

and values 
Contribution to 

)(2 ηΔu      r=11 mm 
Contribution to 

)(2 ηΔu      r=17 mm 
Identification of target point 22 )003.0(),( mmidentu =Δη         9 x 10-6  mm2       9 x 10-6  mm2 
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ordinate 
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Camera angle [ ] )(025.0),( 22222 ϕαϕη urtu rr +=Δ  ( )22 13.0 mmtr =       5  x 10-6  mm2       8  x 10-6  mm2 

Non-coplanarity )(),( 222 zuzu rαη =Δ  22 )5.0()( mmzu =     16  x 10-6  mm2     16  x 10-6  mm2 

Temperature change ( )22 002.0),( mmetemperaturu =Δη  u(T) = 5°C      4  x 10-6  mm2       4  x 10-6  mm2 

Total )(2 ηΔu     35  x 10-6  mm2     40  x 10-6  mm2 
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We may therefore assume the combined uncertainty of the camera displacement values to be 
mmu 008.0)( =Δξ  and mmu 006.0)( =Δη  

 
Weighting both uncertainties equal, the variance of the measurement of the camera displacement is esti-
mated to be 50  x 10-6  mm2 corresponding to a measurement uncertainty of 0.007 mm (1σ). 
 
Taking the covariance matrix given in section 5.7.2 and multiplying with this variance gives 
 

Parameter Back transformed Covariance Matrix (idealised case)  [μm2] 
   

tz 92 0.0 0.0 0.0 -102 0.0 
tx 0.0 670 0.0 506 0.0 0.0 
ty 0.0 0.0 1.4 0.0 0.0 0.0 
δz 0.0 506 0.0 384 0.0 0.0 
δx -102 0.0 0.0 0.0 113 0.0 
δy 0.0 0.0 0.0 0.0 0.0 3.7 

 
Usually the diagonal matrix elements are taken as an estimate of the measurement uncertainty of the pa-
rameters.  

Table 8: Combined and expanded uncertainty of the parameters of rigid body displacement. 

 Measurement uncertainty    Expanded Uncertainty 
 [μm]  (k=2, covering a range of 95% when a 

normal distribution is assumed) 
u(tz) = 9.6  r = 11 mm r = 17 mm U(tz) = 19 μm 
u(tx) = 26    U(tx) = 52 μm 
u(ty) = 1.2  [mrad] [mrad] U(ty) = 3 μm 
u(δz) = 20 u(αz) = 1.78 1.15 U(αz) = 4 mrad 
u(δx) = 11 u(αx) = 0.97 0.63 U(αx) = 2 mrad 
u(δy) = 1.9 u(αy) = 0.17 0.11 U(αy) = 1 mrad 

 


