

Photomechanics 2013, Montpellier, May 27-29, 2013

FAILURE AND DAMAGE IN CFRP TORSION TUBES

<u>E. Hack</u>^a, M. Feligiotti^a, R.K. Fruehmann^b, and J.M. Dulieu-Barton^b ^a Empa, Duebendorf, Switzerland ^b University of Southampton, School of Engineering Sciences, UK

Contents

- Design of test specimen
- **Expected failure mode**
- Initial assessment of CFRP tubes
- **Damage growth and failure experiments**
- **Comparison of DSPI, TSA, and CT Results**
- Conclusions and Outlook

Motivation

- Defects can cause catastrophic damage in CFRP structural elements.
- Size and type of defects must be known for a realistic FE simulation.
- Simulated debonding using e.g. Teflon insert is not representative of the actual situation.
- How can an actual but well-defined defect be created in a brittle material ?
- A test specimen has been designed with the aim to provoke a defined type of damage that can be grown under controlled conditions.

Methods of assessment

DSPI using thermal loading

- \circ out-of-plane measurement
- $\circ~$ display of phase gradient

TSA using torsional loading

- \circ 1 and 5 Hz, $M = M_0 + M_M \cos(\omega t)$
- $\circ~$ display of amplitude images

Computed Tomography CT

- \circ 0.1 mm resolution
- Cross-sections

FE Analysis

- $\circ~$ Failure mode prediction
- Simulation of flawed tube

Torsion tube specimen

with or without

peel-ply finish

Carbo

Link

□ Material: Prepreg UTSXA 150 090

- Fibre Toho Tenax UTS50 F24 24k 1600tex, 150 gsm
- Resin Huntsman XB 3515/Aradur 5021 BD, 37.5 wt%
- □ Layup:
 - $\circ 3 \times 0^{\circ}$ $\circ 14 \times -45^{\circ}$
 - \circ 6 x + 45°
- **Dimensions:**

Torsional loading

- Inserts glued in
- **Instron machine**

Static load	Dynamic load	
-350Nm	-250 ± 100 Nm	70002
	-150 ± 100 Nm	
	+250 ± 100 Nm	
	+150 ± 100 Nm	
-450Nm	-350 ± 100 Nm	
	-250 ± 100 Nm	
	+350 ± 100 Nm	
	+250 ± 100 Nm	
-550Nm	-450 ± 100 Nm	
	-350 ± 100 Nm	
	+450 ± 100 Nm	
	+350 ± 100 Nm	
-650Nm	-550 ± 100 Nm	
	-450 ± 100 Nm	
	+550 ± 100 Nm	
-750Nm	-650 ± 100 Nm	
	-550 ± 100 Nm	Side 4
	+650 ± 100 Nm	
	-250 ± 100 Nm	
	+250 ± 100 Nm	
-850Nm	-750 ± 100 Nm	Crack
	-250 ± 100 Nm	Initiation

Failure modes

z Coorddinate

Perfect Tube

- Initial predicted failure/strength without voids:
 - Critical failure mode: Matrix failure due to compression (pmC)
 - Critical interface: -45/45
 - Limit load (first ply failure): 3'700 Nm

Overview of tests

- Specimen without peel-ply:
 B1
- □ Specimens with peel-ply: B2 B6
 - Specimen B3: taken to failure
 - Specimen B2: TSA and DSPI.
 Fatigued over approx. 80 000 cycles and taken to failure
 - Specimen B4 & B5: TSA and DSPI. Then taken to failure.
 - Specimen B1 & B6: X-ray CT scan
 - Specimen B1: damage growth monitored by TSA during torsion test.
 Measurement by DSPI pre/post damage growth.

Thermal Measurements

- **D** Thermal Stress Analysis: Sinusoidal load of ± 125Nm
- High-speed video for detecting crack initiation

Set-up with mirrors for 360° monitoring

TSA amplitude image ΔT

Quasi-static failure on B3

- □ Failure test applying a quasi static load of -2°/min
- **IRT revealed failure initiation site at -1200 Nm**
- □ Specimen failed at -1300 Nm (FEA prediction -3700 Nm)

B3: post-failure comparison of TSA and DSPI

- $\hfill\square$ TSA post failure at –150 \pm 125 Nm at 1 Hz
- DSPI using thermal loading
- **TSA and DSPI both show the extent of the delamination**

DSPI - phase gradient

Results from TSA and DSPI

- **D** TSA and DSPI correlate well identifying the extent of flaws
- **TT and TSA can be used as a monitoring tool**
- **D** Failure load similar for all peel-ply specimens
- **Can the failure initiation site be predicted?**

Damage initiation

- **Several sites are potential failure initiators (B4 and B5)**
- Only retrospective correlation, but not prospective identification

TSA \triangle *T* stitched from 4 images

Damage growth

- No controlled growth of manufacturing defects with fatigue loading (peel-ply specimen B2)
- Further work to predict failure initiation with confidence:
 X-Ray CT on specimens B1 and B6 to identify presence, size and depth of voids/defects.

ΔT at 2000 cycles

ΔT at 76000 cycles

CT results for peel-ply specimen B6

View from below

CT results for smooth specimen B1

View from below

Comparison of defect volumes

Comparison of CT and DSPI (B1 pre-test)

DSPI: halogen lamp from outside

Side 4

Confirmation of flaws with TSA

Damage growth

Crack initiation at -850 Nm

State before cracking

TSA at: -650 ± 100Nm

State after cracking

TSA at: -250 ± 100Nm

Damage growth confirmed with DSPI

DSPI phase gradient

Conclusions

- TSA and DSPI confirmed the presence of major manufacturing defects identified with X-ray CT scan.
- **Defect was grown without complete failure of the specimen.**
- Small defects in peel-ply specimens cannot be grown.
- FE simulations confirm that the presence of voids reduces ultimate strength while torsional stiffness is hardly affected.
- Prediction of the first ply failure site is only possible when a clear hierarchy of defect sizes and locations is present.

X MATERA+ Acknowledgements

- □ This work was performed as part of the Matera+ project AMUSED
- Funding from the Swiss Commission for Technology and Innovation and the British Technology Strategy Board is acknowledged
- We thank
 - CarboLink for manufacturing the torsion tubes
 - Even AG for performing FE analyses
 - FLIR Systems ATS for providing a thermal camera
 - Empa Laboratory Mechanical Systems Engineering for operating the torsion test machine

The AMUSED consortium consisted of

EMPA	СН	AWE plc	UK
Airbus UK Ltd	UK	LaVision UK Ltd	UK
University of Southampton	UK	GE Aviation	UK
Enabling Process Technologies Ltd (UK)		Carbo Link	CH
FLIR Systems Ltd	UK	EVEN AG	CH

