Visco-elastic behavior of calcium- silicate-hydrates
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Water redistribution under stress

Introduction
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significant impact on the evolution of restraint stresses (manifesting as stress
relaxation) and therefore cracking, in particular at early ages [1], and may lead to
substantial deformations of concrete members Iin the long term [2]. Indeed, it plays
an important role on the durability and service life time of concrete structures.
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With decades’ research, calcium silicate hydrate (C-S-H), the main hydration a 0yl ) =
products, with water has been dedicated to be the main phase for creep in 0.2} . |19
concretes [3]. Different mechanisms associated with C-S-H and water of the visco- | ||
elastic behavior of cement-based materials were proposed in the literature. s 10t 1o 02 o ; - - p " 150
However, due to lack of studies on the C-S-H level, the real mechanism is uncleatr. Relaxation time T (s) Time (hours)
Figure 5 Detected signals from *H NMR for Figure 6 Water redistribution in synthetic C-S-H with
different water populations Ca/Si of 1.2 under thermal stress

The final goal of this project is to elucidate the mechanisms of the visco-elastic
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response of C-S-H and establish a feasible model of creep. In order to achieve that, "g% S ~ 35 -
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Following the framework of the entire project in Fig.3, at the macro and meso-
scale levels, the water distributions will be studied. Mechanical properties will be
determined with uniform C-S-H powder compacts. At the microscopic level, the
Interaction forces between C-S-H Iin different solutions will be investigated.

Further work
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extended surface force apparatus The information will be collected and combined with micro-indentation results to
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Model Figure 3 Framework of the current project. will be compared with simulated viscoelastic behavior of C-S-H In previous study [6].

R f Investigations on water distribution and interaction forces can provide valuable
ererences Information to clarify the mechanism of creep at C-S-H level.
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* The new 20MHz frequency NMR setup at Empa will be mainly used.

** Collaboration with laboratory of advanced fibers at Empa. eSFA at ETH Zurich will be used
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