

GEMS workshop 2020

Lecture 3

Process calculations – Hydrated Portland cement

Barbara Lothenbach, Frank Winnefeld, Bin Ma, Zhenguo Shi

Hydration of Portland cement

- 1) Hydration of PC single system
- 2) Influence of limestone on hydration of PC process file
 - a) Mass based output
 - b) Volume based output
 - c) Composition of aqueous phase
- 3) Influence of fly ash on hydration of PC process file

Hydration of a Portland cement

- The example will show the principle possibility to apply GEMS to simulate cement hydration.
- A cement composition from literature is used.
- 100% hydration with w/c = 0.50 at 20°C is assumed (other assumptions are possible).

Project: Enter a new record key, please	? ×
PC:course:	
PC	Name of the modeling project
Ok Reset From List	Help Cancel

Select CEMDATA18 (3rd party data base)

Select main elements present in PC

30	ep z: Se	sect ind	iepende	ent Comp	onents	(not av	allable f	r snown	in light gray colo	
	I	п	ш	IV	v	VI	VП	νш	€ ↓ ∕	Nit
1	H							He	SELEKTOR	
2	-ti -	Be	В	С	N	0	F	Ne		
3	Na	Mg	AI	Si	Р	S	Cl	Ar		
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co Ni	
4a	Си	Zn	Ga	Ge	As	Se	Br	Kr		
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh Pd	
5a	Ag	Cd	In	Sn	Sb	Те	I	Xe		***
6	Cs	Ba	REE	Hf	Та	W	Re	0s	Ir Pt	
6a	Au	Hg	TI	Pb	Bi	Po	At	Rn		
7	Fr	Ra	ACT			□ Iso	topes		e(Zz)	
L	a Ce	Pr	Nd	Pm S	m Eu	Gd	Tb	Dy H	lo Er Tm	
A	c Th	Ра	U	Np P	u Am	Cm	Bk	Cf	Yb Lu	Vol

Select model for calculation of the aqueous phase

Activity coefficients

Solubility product e. g. of gypsum

$$K_{S0} = \{Ca^{2+}\} \cdot \{SO_4^{2-}\} \cdot \{H_2O\}^2 / \{CaSO_4 \cdot 2H_2O\}$$

$$K_{S0} = \{Ca^{2+}\} \cdot \{SO_4^{2-}\} = 10^{-4.58}$$

$$\{\} : activity; []: concentration$$

$$\{Ca^{2+}\} = [Ca^{2+}] \cdot \underbrace{\bigvee_{Ca2}} \leftarrow Activity coefficicient$$

Correction of concentrations by activity coefficients, as the ions "feel" their neighbours (other ions, solvent). Activity coefficients depend mainly on:

- ionic strength
- other ionic species
- temperature

Activity vs. ionic strength

- selecting the right aqueous electrolyte model

Debye-Hückel
$$\log \gamma_{Ca^{2+}} = \frac{-AZ^2 \sqrt{I}}{1 + Ba\sqrt{I}}$$
 ionic strength $I < 0.1 \text{ M}$
Extended
Debye-Hückel $\log \gamma_{Ca^{2+}} = \frac{-AZ^2 \sqrt{I}}{1 + Ba\sqrt{I}} + bI$
common a, common b (Helgeson) $I < 1-2 \text{ M}$
individual a, common b (Truesdell-Jones) $I < 1 \text{ M}$
individual a, no b $I < 0.3 \text{ M}$
Davies $\log \gamma_{Ca^{2+}} = -AZ^2 (\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.3I)$ $0.1 < I < 0.5 \text{ M}$

SIT
$$\log \gamma_{Ca^{2+}} = \frac{-AZ^2 \sqrt{I}}{1+1.5\sqrt{I}} + \sum \varepsilon m_k$$
 I < 3 M

The calculation of activity coefficients is available as built-in function in the GEMS code. For a detailed overview of different activity coefficients see:

C:\GEMS36\Gems3-app\Resources\doc\pdf\Activity-Coeffs.pdf and references therein

手 SysEq: Please, en	?	×						
PC:G:PC:0:0:1:20:0:								
PC		Name of the modeling project						
	G	Thermodynamic potential to minimize	e <mark>{</mark> G GV}					
PC		Name of the chemical system definition (CSD)						
0		CSD (recipe) variant number <integer></integer>						
o		Volume of the system, dm3 (0 if no volume constraint)						
1		Pressure, bar, or 0 for Psat(H2O)g						
20		Temperature, C (>= 0)						
l la)	Variant number for additional constr	aints					
Ok	Reset	From List Help	Cano	el				

11

Use recipe wizard to enter PC composition

🗽 Input Recipe of Sin	gle Thermodynamic	System: PC:G:PC:(0:0:1:20:0:							?	×
tname PC											
Property	- Selection				Rec	cipe Input	1	1		1	
Compos (xa_) DComp (xd_) IComp (bi_) Phase (xp_) Kin.lower (dll_) Kin.upper (dul_) G0 shift (gEx_) Other Inputs	AI(OH)3 AI2O3 AI2Si2O5(OH)4 Aqua C12A7 C2S C3A C3S C4A3s C4A5 C4AF CA CA2 CH4 CO2 Ca(OH)2	CaCO3 CaMg(CO3)2 CaSO4 CaSO4_05H2O CaSiO3 Fe2O3 FeCO3 FeO FeOOH FeS Gypsum H2 H2S H2SO4	K2CO3 K2O K2SO4 KOH Mg(OH)2 Mg3Si2O5(OH)4 MgCO3 MgO MgSO4 Na2CO3 Na2O Na2CO3 Na2O Na2SO4 Na0H O2 PC	SO3 SiO2	1 2 3	Property xa_ xa_ xa_	Name Aqua O2 PC	Quantity 50 0.1 100	9 9 9	Units	
Input quantities of Learn more	of Compos(itions) o	ontributing to B_	vector				р	rint OK		Canc	▶ xel

PC = predefined composition

Composition of a PC without limestone addition

Normative phase composition [g/100 g]	
Alite ^c	66.5
Belite ^c	10.3
Aluminate ^c	7.5
Ferrite ^c	8.5
MgO(periclase) ^c	0.9
CaO (free) ^d	0.93
CaCO ₃ ^d	0.6
$CaSO_4 \cdot 2H_2O^d$	3.1
K ₂ SO ₄ ^b	1.3
Na ₂ SO ₄ ^b	0.21

Present as solid solution in the	clinker phases
K ₂ O ^d	0.054
Na ₂ O ^d	0.33
MgO ^d	0.94
SO ₃ ^d	0.11

Pa	ne 1 Settings 13/05	/2019 1	0.48					
Fa	ge 1 Setungs 15/03	12019, 1	01.01					
+ -	- + M 10 0	9	1 10 0					
	I							
Lot	thenbach_ea_b:2008:pa	p:	OPC composition					
	formU	AUc.	CA					
0	CaO	g	63.9					
1	SiO2	g	20.2					
2	A1203	g	4.9					
3	Fe203	g	3.2					
4	MgO	g	1.8					
5	K20	g	0.78					
6	Na2O	g	0.42					
7	C02	g	0.26					
	503	~	2 29					

Available in CEMDATA18 as predefined composition «PC»

B. Lothenbach et al. / Cement and Concrete Research 38 (2008) 848-860

SingleSystem		5 🗖 🎸 🤟 🖶 🚺 🤅	PC:G:PC:0:0:1:20:0:
PC:*:*:*:*:*:	Input: System Definition Results: Equilibri	um State	1
	Phase/species	L T: On/ UC Add to BC UG	G0 corr. UK Lower_KC Upper_KC KC type
	i aq_gen	69 a + g 0 J	0
	🕂 gas gen	6 g + g 0 J	0
		2 s + g 0 J	0
s	E CSHQ	6 s + g 0 J	
	+ ettringite-Alfe	2 s + g U J	
	monosulph-AlFe	2 s + g 0 J	
	monosulph-FeAl	2 s + g 0 J	
,	straetlingite	2 s + q 0 J	
•	<pre>ettringite</pre>	2 s + q 0 J	0
•	± SO4 OH AFm	2 s + g 0 J	0
T I	DH_SO4_AFm	2 s + g 0 J	0
	. SO4_CO3_AFt	2 s + g 0 J	0
	E CO3_SO4_AFt	2 s + g 0 J	0
	hydrotalc-pyro	2 s + g 0 J	0
	MSH	2 s + g 0 J	
		1 s + g 0 J	
	+ AI (OH) 3mic	Is+g0 J	
	H- Gibbsite		
	H-Graphite		all main comont hydrates
	H Mavenite	1 s + α 0 J	an main cement nyurates
	Belite	1 s + q 0 J	0
	+ Aluminate	1 s + g 0 J	included in this project
	🗄 Alite	1 s + g 0 J	
	🗄 🗝 Ferrite	1 s + g 0 J	0
		1 s + g 0 J	0
	CA2	1 s + g 0 J	0
	E C2AH75	1 s + g 0 J	0
	H. CANH11		
	H. CANHIS		
	E C4AH19	1 S T G O J	
	F-CAH10	1 s + q 0 J	0
	C4AsH105	1 s + g 0 J	0
	+ C4AsH12	1 s + g 0 J	0
	C4AsH14	1 s + g 0 J	0
	C4AsH16	1 s + g 0 J	0
	C4AsH9	1 s + g 0 J	0
	•••		

C-S-H is modeled as a solid solution of 6 different species:

Input: System Definition Results: Equilibrium S	State													
Phase/species	L	T	On/	UC	Add	to	BC	UG	GO	corr.	UK	Lower KC	Upper KC	KC type
± aq gen	69	a	+	g	0		_	J	0					
± gas_gen	6	g	+	g	0			J	0					
	2	s	+	g	0			J	0					
CSHQ	6	s	+	g	0			J	0					
CSHQ-JenD		I	+	М	0			J	0		М	0	1000000	в
CSHQ-JenH		I	+	М	0			J	0		М	0	1000000	в
CSHQ-TobD		I	+	М	0			J	0		М	0	1000000	В
CSHQ-TobH		I	+	М	0			J	0		М	0	1000000	В
KSiOH		I	+	М	0			J	0		М	0	1000000	В
NaSiOH		I	+	М	0			J	0		М	0	1000000	В

 $CSH-JenD = (CaO)_{1.5} \cdot (SiO_2)_{0.6667} \cdot (H_2O)_{2.5}$

 $CSH-JenH = (CaO)_{1.333} \cdot (SiO_2)_1 \cdot (H_2O)_{2.1667}$

 $CSH-TobD = [(CaO)_{1.25} \cdot (SiO_2)_1 \cdot (H_2O)_{2.75}]_{0.6667}$

 $CSH-TobH = (CaO)_{0.6667} \cdot (SiO_2)_1 \cdot (H_2O)_{1.5}$ Kulik D.A., Cem. Concr. Res. 41 (2011), 477.

The 4 C-S-H species are in ss with (hypothetical) Na- and K-silicates to model alkali binding by C-S-H.

Lothenbach, B., Kulik, D., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B.Z., Miron, D.G., Myers, R. (2018) Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials *Cement and Concrete Research*, 115, 472-506.

Before calculation, deactivate the following phases:

- Goethite, hematite, quartz, ...
 (form at high temperature after long times)
- C₃AH₆, gibbsite, AH₃ (depending on reaction time), ...
- Thaumasite (formation fast at low temp. Very slow at ambient temp and above)
- others:
 - Etttringite Al/Fe ss Monosulfate Al/Fe ss C_4AH_{13} , C_4AH_{19}

In general it is recommended:

- Use either the pure phase or the ss (deactivate the other); in this case C₄AH₁₃ & C₄AH₁₉
- Look at the results, compare with experimental data !

ut: System Definition Results: Equilibrium State							
hase/species	L	T!	On/	UC	Add	to	BC
aq_gen	75	a	+	g	0		
gas gen	6	g	+	g	0		
C3 (AF) S0.84H	2	s	+	g	0		
CSHQ	6	s	+	g	0		
ettringite-AlFe	2	s	-	g	0		
ettringite-FeAl	2	1	-	g	0		
monosulph-AlFe	2	s	-	g	0		
monosulph-FeAl	2	6	-/	g	0		
stractlingite	2	s	-	g	0		
ettringite	2	s	+	g	0		
SO4_OH_AFm	2	s	+	g	0		
OH_SO4_AFm	2	s	+	g	0		
SO4_CO3_AFt	2	s	+	g	0		
CO3_SO4_AFt	2	s	+	g	0		
hydrotalc-pyro	2	s	+	g	0		
MSH	2	s	+	g	0		
Al (OH) 3am	1	s	+	g	0		
Al (OH) 3mic	1	s	1	g	0		
Gibbsite	1	4	-	g	0		
Kaolinite	1	s	+	g	0		
Graphite	1	s	+	g	0		
Mayenite	1	s	+	g	0		
Belite	1	s	+	g	0		
Aluminate	1	s	+	g	0		
Alite	1	s	+	g	0		
- Ferrite	1	s	+	g	0		
CA	1	s	+	g	0		
CA2	1	s	+	g	0		
C2AH75	1	s	+	g	0		
CSVHC	1	s	\frown	g	0		
C4AH11	1	s	- \	g	0		
C4AH13	1	s	-	g	0		
C4AH19	1	s	- /	g	0	1	16
CAH10	1	s	\checkmark	g	0		
	4		÷		<u>^</u>		

Experimental conditions: React 100 g PC with 50 g water (add 0.1 g air CO₂-free)

Convergence problem - workaround

Predicted stable	Phase/	species	L	T	Amount (mol)	logSI/Activity
redicted stable	a	aq_gen	69	a	0.74137655	1.182e-08
nhaca accomplaga		gas_gen	6	g	0.0031839843	-1.857e-08
phase assemblage	•	C3(AF)S0.84H	2	s	0.04076995	5.09e-09
		CSHQ	6	s	0.44660884	8.212e-09
	+ s	ettringite-AlFe	2	s	0	-1
	. s	ettringite-FeAl	2	s	0	-1
Si-Hydrogarnet	. s	monosulph-AlFe	2	s	0	-1
, ,	• S	monosulph-FeAl	2	s	0	-1
C_S_H	• • s	straetlingite	2	s	0	-1.43
C-3-11	• S	ettringite	2	s	0.0097500233	-3.139e-08
	• S	SO4_OH_AFm	2	s	0	-1
ettringite	• S	OH_SO4_AFm	2	s	0	-1
	• S	SO4_CO3_AFt	2	s	0	-0.02336
	• • S	CO3_SO4_AFt	2	s	0	-0.02336
homicarhonata	÷ S	C4Ac0.5H12	1	s	0.0033530233	6.289e-08
		C4Ac0.5H9	1	s	0	-4.902
	± S	C4AcH11	1	s	0.0043671699	-2.068e-08
man a carbanata	±	C6AsH13	1	s	0	-29.53
monocarbonale	±	C6AsH9	1	s	0	-37.75
	±	Aragonite	1	s	0	-1.619
	±	Calcite	1	s	0	-1.475
nortlandite						
	+ S	lime	1	s	0	-9.961
	±	Portlandite	1	s	0.46432156	-1.099e-08
	÷	Anhydrite	1	s	0	-3.615
	1 🗄	2	4		<u>^</u>	0.050
hydrotalcite	_ 	OH-hydrotalcite	1	s	0.01142203	1.975e-13
2		Magnesite	1	s	0	-9.084
	± S	Brucite	1	s	0	-1.358

limestone (0.6 M.-% in the system) fully reacted

Composition of C-S-H

Input: System Definition Results: Equilibrium	m State				
Phase/species	L	T: Amount (mol)	logSI/Activity	Concentration	Acti
🕂 a aq gen	69	a 0.74137655	1.182e-08		
j gas gen	6	g 0.0031839843	-1.857e-08		
E C3 (AF) S0.84H	2	s 0.04076995	5.09e-09		
s CSHQ	6	s 0.44660884	8.212e-09		
CSHQ-JenD		I 0.16459588	0.368546	0.36854595	1
CSHQ-JenH		I 0.10337445	0.231465	0.2314653	1
CSHQ-TobD		I 0.12210382	0.273402	0.27340215	1
CSHQ-TobH		I 0.0048265065	0.010807	0.010807011	1
KSIOH		I 0.027356399	0.0612536	0.061253599	1
NaSiOH		I 0.024351789	0.054526	0.05452599	1
t c ottringito_AlFo	2	c 0	_1		-

36.9 mol-% CSH-JenD = $(CaO)_{1.5} \cdot (SiO_2)_{0.6667} \cdot (H_2O)_{2.5}$ 23.1 mol.-% CSH-JenH = $(CaO)_{1.333} \cdot (SiO_2)_1 \cdot (H_2O)_{2.1667}$ 27.3 mol.-% CSH-TobD = $[(CaO)_{1.25} \cdot (SiO_2)_1 \cdot (H_2O)_{2.75}]_{0.6667}$ 1.1 mol.-% CSH-TobH = $(CaO)_{0.6667} \cdot (SiO_2)_1 \cdot (H_2O)_{1.5}$ 6.1 mol.-% KSiOH = $[(KOH)_{2.5} SiO_2 H_2O]_{0.2}$ 5.5 mol.-% NaSiOH = $[(NaOH)_{2.5} SiO_2 H_2O]_{0.2}$

Al-intake in C-S-H: In preparation

For alkali activated slag use CNASH_ss model:

See: Myers et al., Cem. Concr. Res. 66 (2014), 27-47.

(provided separately in CEMDATA18 as "aam")

C-S-H solid solution: 0.022 $K_2O \cdot 0.020 \text{ Na}_2O \cdot 1.582 \text{ Ca}O \cdot 1 \text{ SiO}_2 \cdot 2.874 \text{ H}_2O => \text{Ca/Si} = 1.58$

(Composition of C-S-H										
)at	ata Calculate View Print Window Help										
ſ			P 5 🗐 🎸 🗎		PC:G:PC:0:0:1:20:0:						
	EqIC EqPh EqDC EqSurf EqGen 26/03/2020, 15:49										
		Na	0	S	Si	Zz					
	88119	0.012175895	4.2621004	0.02925007	0.34393204	0					
	e-012	0.0016890444	0.73681839	9.9699668e-006	7.552195e-007	3.4895545e-018	a aq_gen				
	0	0	0.0062923754	0	0	0	g gas_gen				
	0	0	0.4892394	0	0.034246758	0	s C3(AF)S0.84H				
	0	0.012175895	2.0118444	0	0.30968528	0	s CSHQ				
	0	0	0	0	0	0	s ettringite-AlFe				
						bXa[{CSHQ}][{S	Si}]				

bXa[{CSHQ}][{Na}]

Syntax for use in process calculations

Summary C-S-H solid solution :

C-S-H solid solution: $0.022 \text{ K}_2 \text{O} \cdot 0.020 \text{ Na}_2 \text{O} \cdot 1.582 \text{ CaO} \cdot 1 \text{ SiO}_2 \cdot 2.875 \text{ H}_2 \text{O}$ Ca/Si = 1.58, K/Si = 0.044, Na/Si = 0.040 (K/Ca = 0.028, Na/Ca = 0.025)

Presence of hydrogarnet

	Input: System Definition Results: Equilibrium St	ate					
	Phase/species	L	T!	Amount (mol)	logSI/Activity	Concentration	Activity coeff
	🗉 a aq gen	69	a	0.74137655	1.182e-08		
	🗉 g gas_gen	6	g	0.0031839843	-1.857e-08		
Г	□ s C3(AF)S0.84H	2	S	0.04076995	5.09e-09		
L	C3AFS0.84H4.32		Ι	0.040539285	0.994342	0.99434228	1
L	C3FS0.84H4.32		I	0.00023066497	0.00565771	0.0056577202	1
	⊡ s CSHQ	6	S	0.44660884	8.212e-09		
		-		-	-		

Iron-containing siliceous hydrogarnet is modelled as a solid solution with the following end members:

$C_{3}A_{0.5}F_{0.5}S_{0.84}H_{4.32}$ and $C_{3}FS_{0.84}H_{4.32} => AI/Fe \approx 1$

Al/Fe ratios > 1 are not considered due to experimental findings on hydrated cement pastes with «normal» curing times (up to a few years). The data for $C_3AS_{0.42}H_{5.16}$ and $C_3AS_{0.84}H_{4.32}$ are deactivated but would be available in the database.

B.Z. Dilnesa, B. Lothenbach, G. Renaudin, A. Wichser, D. Kulik, Synthesis and characterization of hydrogarnet $Ca_3(Al_xFe_{1-x})_2(SiO_4)_y(OH)_{4(3-y)}$, Cem Concr Res 59 (2014) 96-111.

B.Z. Dilnesa, E. Wieland, B. Lothenbach, R. Dähn, K. Scrivener, Fe-containing phases in hydrated cements, Cem. Concr. Res. 58 (2014) 45–55.

Room temperature: only C_3AH_6 and $C_3FS_xH_{6-2x}$ forms, but no $C_3AS_xH_{6-2x}$ $C_3AS_xH_{6-2x}$ forms only at 110 C°, altough stable at 20 °C

However, mixed $C_3A_{0.5}F_{0.5}S_xH_{6-2x}$ form

Fe- siliceous hydrogarnet in hydrated PC

=> difficult to detect by XRD => selective extraction

Dilnesa ea 2014

Si-hydrogarnet in hydrated PC a) 0.8 Ca₃Al_{0.9}Fe_{1.0}Si_{0.85}O_{7.55} 0.6 (AI+Fe)/Ca 20°C $C_2(A,F)$ 0.4 0.2 0 0.2 0.4 0.6 0 Si/Ca b) Ca₃Al_{1.1}Fe_{0.95}Si_{1.0}O_{8.08} 0.8 Si-Hg 0.6 (Al+Fe)/Ca 50°C 0.4 OPC-150-50 15.0kV x5080 5µm Fig. 8. SEM of ferrite clinker surrounded by hydration products after selective extraction. 0.2 B.Z. Dilnesa, E. Wieland, B. Lothenbach, R. Dähn, K. Scrivener, Fe-containing phases in hydrated cements, Cem. Concr. Res. 58 (2014) 45-55. 0 0.2 0.4 0.6 0

25

Si/Ca

Siliceous hydrogarnet (PC blended with fly ash)

Deschner F., Lothenbach L., Winnefeld F., Neubauer J.: Effect of temperature on the hydration of Portland cement blended with siliceous fly ash, Cement and Concrete Research 52 (2013), 169-181.

Si-hydrogarnet in hydrated ACSA

Chitvoranund N., Winnefeld F., Hargis C.W., Sinthupinyo S., Lothenbach B.: Synthesis and hydration of alite-calcium sulfoaluminate cement, Advances in Cement Research 29 (2017), 101-111.

Hydrated cement composition – summary

- possibility to apply GEMS to simulate hydrated cement
- use metastability constraints (e.g. goethite suppressed)
- use either oxide composition or phase composition as input
- iron and alkalis present in real "PC" Thus to improve accuracy of the calculation one has to consider:
 - Iron containing phases (mainly hydrogarent important (Möschner et al. Geoch. Cosm. Acta 2007, Dilnesa et al. CCR 2014a+b included in the cement database)
 - Sorption of alkalis on C-S-H, good proxy, not perfect (*experimental data*: Hong and Glasser CCR 1999, included in the database)
 - Sorption of sulfate on C-S-H (*experimental data:* Divet et al. CCR 1998, Barbarulo et al. 2002, Skapa PhD Thesis U. Aberdeen, 2009) not included
 - Substitution of alumina (Richardson CCR 1994, Chen et al. ICCC 2007, Pardal et al. CCR 2009 & Inorg. Chem. 2012, ongoing work based on CASH I+II projects at Empa, for alkali activated slags use CNASH_ss model by Myers et al., CCR 2014, provided separately as aam for GEMS)
- kinetics can be taken into account as function of clinker reactivity over time (e.g. Lothenbach et al. CCR 2006 & 2008)

Hydration of Portland cement

- 1) Hydration of PC single system
- 2) Influence of limestone on hydration of PC process file
 - a) Mass based output
 - b) Volume based output
 - c) Composition of aqueous phase
- 3) Influence of fly ash on hydration of PC process file

Description of analytical problem

- Addition of increasing amounts of limestone to OPC
- We want to assess the chemical and mineralogical consequences of the addition of increasing amounts of limestone, as calcite, in a systematic way.
- Related phase changes
 - a) mass changes
 - b) volume changes
 - c) changes in the aqueous phase composition

Process simulations - Short introduction

- simulation of stepwise processes, e.g. dissolution, incremental addition, mixing, titration
- especially useful if a regular change of the bulk composition occurs in the process
- simulation of incremental temperature changes

Process simulations - Short introduction

- GEMS uses a built in math script interpreter to execute process simulations and other functions (similar to the macros in Excel)
- a description of the math script interpreter and used expressions can be found in the related GEMS help file

Process file - hydration of PC + limestone

Experimental problem:

Blending of the **hydrated cement** from the previous example ...

	PC	
Chemical analysis [g/100 g	^a	
CaO	63.9	
SiO ₂	20.2	
Al_2O_3	4.9	
Fe ₂ O ₃	3.2	
CaO (free)	0.93	Parental system
MgO	1.8	a enta system
K ₂ O	0.78	with various amo
Na ₂ O	0.42	
CO ₂	0.26 lin	nestone
SO ₃	2.29	
K ₂ O _{soluble} ^b	0.72	
Na ₂ O _{soluble} ^b	0.09	
Ignition loss	0.37	

us amounts of

Experimental problem:

Addition of increasing amounts of limestone to PC up to 10% in steps of 0.2%)

Assumptions:

- initial amount of cement constant = 100 g
 "cement" = PC + limestone (= 100% CaCO₃)
- w/b ratio = 0.50 (50 g water), constant
- addition of 0.1 g O₂, constant
- 100% hydration

Process file - hydration of PC + limestone

We use the single file created previously now as parent file for the process simulation.

Single calculations Process calculations $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Modules	Record	Data C	alculate	View	w Print Window Help			
Single calculations \rightarrow Process calculations \rightarrow extrm before the extra balance of the extrement of the extrement of the extra balance of the extra bala		1 2	SingleSyst	em	-) 🛨 🔚 🦛 🖚 💌 📑 🚺		6	V
3 4 5 Process calculations 75 a + aga_gen 6 g + agaagen 6 g + agaagen 6 g + agaagen 6 g + agaagen 6 6 s + agaagen 6 6 s + agaagen 6 75 a + agaagen 6 75 a + agaagen 6 75 a + agaagen agaagen 6 75 a + agaagen<	Single calculations \longrightarrow	ATA	R PC		*;*;		Input: System Definition Results: Equilibrium State			
Process calculations → 1 0 1			3	4	0		Phase/species	L	T	On/o
Image: Construction of the second	Process calculations		1.			Ĩ	∎ aq_gen	75	а	+
Image: Constraint of the second se							🗄 🔤 gas_gen	6	g	+
B-CSHQ6sB-ettringite-AlFe2sB-ettringite-FeAl2sB-ettringite-FeAl2sB-ettringite							🗄 — C3 (AF) S0.84H	2	s	+
GEDemo		4					E CSHQ	6	s	+
GEDERIOGEDERIOGEMENTGEMENTUNSpaceGEMENTProjectProjectProjectGEDERIOGEMENT <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>🗉 ettringite-AlFe</td><td>2</td><td>s</td><td>-</td></tr<>							🗉 ettringite-AlFe	2	s	-
GrDemo GrDemo GEDEMO GEM2MT UnSpace Project GEDEMO GEM2MT GEM2		•••					🗉 ettringite-FeAl	2	s	-
GEM2MT Image: Semigradian constraints of the second se		GtDemo					🗄 monosulph-AlFe	2	s	-
GEM2MT UnSpace Project							monosulph-FeAl	2	s	-
GEM2MT •••••••••••••••••••••••••••••							🗉 straetlingite	2	s	+
Image: Solid off AFm 2 s + Image: Solid off AFt 2 s + I		GEM2MT					🗄 ettringite	2	s	+
UnSpace 0H SO4 AFm 2 s + UnSpace SO4 CO3 AFt 2 s + WinSpace SO4 CO3 SO4 AFt 2 s + WinSpace SO4 CO3 SO4 AFt 2 s + WinSpace MSH 2 s + + MSH 2 s + WinSpace MSH 2 s + + - Al (OH) 3am 1 s + WinSpace MSH 2 s + + - Al (OH) 3am 1 s + WinSpace MSH 1 s + - - Al (OH) 3mic 1 s + - - - - 35		τL						2	s	+
UnSpace UnSpace Project Project Image: Sold_CO3_AFt 2 s + Image: Sold_CO3_SOld_AFt 1 s + Image: Sold_CO3							⊕ OH SO4 AFm	2	s	+
UnSpace Project UnSpace UnSpa		1					\pm so4 co3 AFt	2	s	+
Project Projec		UnSpace					E-CO3 SO4 AFt	2	s	+
Project Image: MSH 2 s + Image: MSH Image: MSH 1 s - Image: MSH Image: MSH Image: MSH 1 s Image: MSH Image: MSH Image: MSH 1 s Image: MSH Image: MSH Image: MSH 1 s Image: MSH Image: MSH Image: MSH 1 s - Image: MSH <td></td> <td>500</td> <td></td> <td></td> <td></td> <td></td> <td>hydrotalc-pyro</td> <td>2</td> <td>s</td> <td>+</td>		500					hydrotalc-pyro	2	s	+
Project Project Al (OH) 3am I s + Al (OH) 3mic I s + Gibbsite I s - 35		30						2	s	+
Image: Al (OH) 3mic 1 s + Image: Gibbsite 1 s -		Project					Al (OH) 3am	1	s	+
Gibbsite 1 s -							Al (OH) 3mic	1	s	+
<u> </u>							🗄 — Gibbsite	1	s	_
							≟ ++ = 1 ° °	4		35

Process file - hydration of PC + limestone

Choice of simulation type: In the case of incremental limestone addition we directly change the bulk composition

ightarrow Sequential change of bulk composition

GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS_mass:S: ?							
Step 1 - Process Simulator Configuration							
 This is a tool for 'batch' calculation of multiple equilibrium states, sampling and plotting of results. In this way, irreversible geochemical processes (e.g. mixing, dissolution, hydration, titration, corrosion, weathering) can be simulated. The Process record can be configured in several modes to perform specific simulation scenarios by execution of process control script 'F and simulation output script 'pgExpr'. Simple scripts can be easily produced using this wizard. Any process simulator belongs to one of three types: 'Sequential': only input GEM parameters are modified (modes P, S, L); 'Reciprocal': next step depends on GEM output parameters (e.g. pH) from previous step (mode R); 'Inverse': GEM input adjusted to obtain prescribed values of GEM output (e.g. pH; modes G, T). 	2_expr'						
 Please, choose a process simulation mode: P Sequential temperature and/or pressure change at fixed bulk composition S pirect sequential change of bulk composition and/or constraints (default) G Batch inverse titration sequence for incremented pH values etc. T One arbitrary inverse titration calculation as defined in Process control script R Sequential reactor scheme, uses equilibrium bulk compositions of phases L Lippmann diagram (transposed) for a binary solid solution 							
Learn more < Back Next> C	ancel						

Wizard available for process files

GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS-mass:S:

? ×

 Adapt temperature and step size for stored individual calculations

2. Select PC and CaCO₃ (as we want to vary their relative amounts)

3. Select Aqua and O₂

Step 2 - Process Simulation Controls (click 'Next' to retain the old script)

	iTm	iV	iP	itc	iNv	iTau	ipXi	iNu	ipH	ipe	<u> </u>
From	1000	C	1	20	0	0	0	0.1	0	0	
Until	1200	C	1	20	0	0	0	3.1	0	0	
Cton	1	ſ	0	0	٥	٥	٥	0 1	٥	٥	•

• Titration cNu (linear) O Diagram logD vs x (linear) Titration cpXi logarithmic O Diagram logKd vs log(m)

Linear titration and logD diagrams use the iNu iterator; logarithmic titration and logKd digrams use ipXi. Titrations: select required titrants as items from 'Compos', 'DComp', 'IComp' or 'Phase' lists, optionally also select items from 'DC-lower' or 'DC-upper' to change metastability constraints.

To plot logD vs linear x (mole fraction) scale: (i) select minor then host end member from the 'DComp' list, (ii) select trace then host ion from the 'Molality' list. To plot logKd and isotherms vs log(molality) scale: (i) select trace then host compositions from the 'Compos' list; (ii) select trace then host elements from the 'Sorbed' list. In both cases, skip the next wizard page.

Compos DComp IComp CaSO4_05H2O CaSiO3	H2S H2SO4 HCI	Mg3Si2O5(OH)4 MgCO3 MgCl2	NaOH O2 PC	<pre>modC[J] =: cNu; xa_[{CaCO3}] =: cNu * 1; xa_[{PC}] =: cNu * 1;</pre>	
Fe2O3 CC-lower DC-upper Molality Sorbed FeO FeO FeO FeO Gypsum H2	HCIO4 K2CO3 K2O K2SO4 KCI KOH Mg(OH)2	MgO MgSO4 Na2CO3 Na2O Na2SO4 NaCl NaClO4	SO3 SWsaltSimp SiO2	We need to edit this later	
earn more				> Sack Next> Car	39

?

Wizard available for GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS_Mass:S: process files Step 3 - Selection of items to sample/plot (click "New

- 1. Select solids: choose
- 2. phM => mass (in g); => we can adapt skript later

Scalars u u u u u u u u u u u u u u u u u u u	iq_gen jas_gen 3(AF)S0.84H SHQ traetlingite ttringite 04_0H_AFm 0H_SO4_AFm 04_C03_AFt	Ferrite CA CA2 C2AH75 C3AH6 CAH10 C4AsH105 C4AsH12	C6AsH9 Aragonite Calcite C3FH6 C4FH13 C3FS0.84H C3FS1.34H	<pre>xp[J] =: J; yp[J][0] =: phM[{CSHQ}]; yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF)S0.84H}]; yp[J][3] =: phM[{ettringite}]; yp[J][4] =: phM[{SO4_CO3_AFt}]; yp[J][5] =: phM[{CO3_SO4_AFt}];</pre>
u g ue g b C C M_t st Igm_t st icM S Xa S Xwa S phyol C	q_gen (as_gen (3(AF)S0.84H (SHQ traetlingite ttringite (04_0H_AFm (04_03_AFt (04_03_AFt	Ferrite CA CA2 C2AH75 C3AH6 CAH10 C4AsH105 C4AsH12	C6AsH9 Aragonite Calcite C3FH6 C4FH13 C3FS0.84H C3FS1.34H	<pre>yp[J][0] =: phM[{CSHQ}]; yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF)S0.84H}]; yp[J][3] =: phM[{ettringite}]; yp[J][4] =: phM[{S04_C03_AFt}]; yp[J][5] =: phM[{C03_S04_AFt}];</pre>
ue g b Cb c m_t st Igm_t e icM s Xa c Xwa s phYol c	as_gen 3(AF)S0.84H SHQ traetlingite ttringite 04_0H_AFm 0H_SO4_AFm 04_C03_AFt	CA CA2 C2AH75 C3AH6 CAH10 C4AsH105 C4AsH12	Aragonite Calcite C3FH6 C4FH13 C3FS0.84H C3FS1.34H	<pre>yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF)S0.84H}]; yp[J][3] =: phM[{ettringite}]; yp[J][4] =: phM[{SO4_CO3_AFt}]; yp[J][5] =: phM[{C03_SO4_AFt}];</pre>
b Cb Cb Cb Cb Cb Cb Cb Cb Cb Cc	3(AF)S0.84H SHQ traetlingite ttringite O4_OH_AFm DH_SO4_AFm O4_CO3_AFt	CA2 C2AH75 C3AH6 CAH10 C4AsH105 C4AsH12	Calcite C3FH6 C4FH13 C3FS0.84H C3FS1.34H	<pre>yp[J][2] =: phM[{C3(AF)S0.84H}]; yp[J][3] =: phM[{ettringite}]; yp[J][4] =: phM[{S04_C03_AFt}]; yp[J][5] =: phM[{C03_S04_AFt}];</pre>
Cb C	SHQ traetlingite ttringite O4_OH_AFm DH_SO4_AFm O4_CO3_AFt	C2AH75 C3AH6 CAH10 C4AsH105 C4AsH12	C3FH6 C4FH13 C3FS0.84H C3FS1.34H	<pre>yp[J][3] =: phM[{ettringite}]; yp[J][4] =: phM[{SO4_CO3_AFt}]; yp[J][5] =: phM[{CO3_SO4_AFt}];</pre>
m_t st lgm_t s icM S Xa S Xwa S phVol	traetlingite ttringite O4_OH_AFm OH_SO4_AFm O4_CO3_AFt	C3AH6 CAH10 C4AsH105 C4AsH12	C4FH13 C3FS0.84H C3FS1.34H	<pre>yp[J][4] =: phM[{SO4_CO3_AFt}]; yp[J][5] =: phM[{CO3_SO4_AFt}];</pre>
lgm_t e icM S Xa G Xwa S phVol G	ttringite 04_0H_AFm 0H_SO4_AFm 04_CO3_AFt	CAH10 C4AsH105 C4AsH12	C3FS0.84H C3FS1.34H	<pre>yp[J][5] =: phM[{CO3_SO4_AFt}];</pre>
icM S Xa G Xwa S phVol C	O4_OH_AFm OH_SO4_AFm	C4AsH105	C3FS1.34H	
Xa C Xwa S phYol C	OH_SO4_AFm	CAAsH12		yp[J][6] =: pnM[{C4ASH16}];
Xwa S phVol C	O4 CO3 AFt	CHASITIZ	C4Fc05H1C	yp[J][7] =: phM[{SO4_OH_AFm}];
phVol	01_000_1	C4AsH14	C4FcH12	yp[J][8] =: phM[{OH_SO4_AFm}];
	03_SO4_AFt	C4AsH16	Dolomite-c	yp[J][9] =: phM[{C4Ac0.5H12}];
ohM h	ydrotalc-pyro	C4AsH9	Dolomite-c	yp[J][10] =: phM[{C4ACH11}];
Fa	/ISH	Chabazite	lime	yp[J][11] =: pnM[{Calcite}];
bXa(aq_gen) A	l(OH)3am	ZeoliteP	Portlandite	$yp[J][12] =: phm[{OH-hydrotalcice}];$
bXa(gas_ger A	I(OH)3mic	C2ASH55	Anhydrite	[yp[J][15] =. phwl{dd_den}],
bXa(C3(AF)S	aolinite	C4AcH9	Gypsum	
bXa(CSHQ) G	Graphite	C4Ac0.5H105	hemihydra	
bXa(straetlin N	Aayenite	C4Ac0.5H12	Iron	
bXa(ettringit B	elite	C4Ac0.5H9	Fe-carbona	
bXa(SO4_OF A	luminate	C4AcH11	Siderite	We need to edit this later
bXa(OH_SO4 A	lite	C6AsH13	Magnetite	
bXa(SO4_CO	4		- N	
bXarCQ3 SQ 🛄 📃				
∢ 				

Step 3 - Selection of items to sample/plot (click "Next" without selecting anything to retain the old script)

Numerical settings of process simulation

0	GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS	_mass:S:		? ×]
	Step 4 - Important data object dimensions				
	Spin boxes below define the dynamic memory co Number of ster	onfiguration of the process simulator.			
		2 colui	mns for input constitue	nts of bulk c	omposition
	Dimensions of sampled and experimental data	(PC co	mponents, limestone)		
	54 . nPS - Number of steps (1 to 9999)) to be performed in this simulation (de	fault: 21); also length of the 'xp' vector.		
	2 - Number of 'modC' array columns (:	1 to 40, 0 - not used) to store process	control values; number of rows will be nPS	v columns ir	output file
	14 🕂 Number of columns in the 'yp' table	e (0 to 200) to keep the simulated data	sampled by the pgExpr script; number of rou	ws will be nPS.	f expected phases $= 14$)
(1 Number of columns in the 'xp' table	e (0 to 4) to keep the simulated data sa	ampled by the pgExpr script; number of rows	a will be nPS.	r expected phases = 14)
	0 🗦 Number of rows in the xEp, yEp an	rays for experimental data (optional)		ala ar af ar a di	
	Number of columns in the xEp, yEp	arrays for experimental data (optional) num	ider of x col	umns in output file
	Ontional entries of	of experimental data	(ner	e = amount	of limestone)
	Optional data votors citigati tass campos	afar with the bridge of the second	ntrol values for all steps performed. They ca	n be allocated using	
	checkboxes below. The assignment operator wi	th J index) in the script will override an	y values automatically copied into data vector	or from the	
	respective process iterator.				
	Allocation of optional data vectors				
	CSD variant # ('vTm')	Volume V, I ('vV')	□ Pressure P, bar ('vP')		Convenient to
	Temperature T ('vT')	Constraints # ('vNV')	🗌 Process extent Nu ('vNu')		«overestimate»
	Process extent pXi ('vpXi')	☐ Kinetic parameters ('vKin')	🗌 Time Tau ('vTau')		because maybe more
L	earn more		< Back Ne	ext> Cancel	phases occur than expected

Additional settings

GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS_mass:S:	? ×
Step 5 - Additional options	
On this page, some options of the Process simulator operation can be changed (for specific cases).	
Optional modes of operation Use 'P_expr' simulation control script (can be turned off in P simulation mode) Sive generated SysEq records to the project data base (always saved in G and T modes) Use time dependent calculations and plotting mode (for kinetics simulations, reserved) Use Smart Initial Approximation of GEM IPM algorithm for faster calculations (on your discretion) Use a stepwise mode of Process simulation (for troubleshooting purposes)	 Save the equilibria of each step independently ⇒ Good to check each calculations ⇒ But can make files big ⇒ Can also be turned off
The 'P_expr' simulation control script must be used in most cases except the P mode (e.g., if temperature is c recipe remains constant). Saving process-generated SysEq records may be necessary for subsequent sampling of results by GtDemo mo dramatically increase the size of project database. This flag has no effect on reciprocal and inverse titrations, always saved.	hanged using iTC iterator, but the system dule or for troubleshooting, but may where optimized SysEq records are
Learn more	< Back Next> Cancel

Additional settings

GEM-Selektor Process Setup: PC:G:PC:0:0:1:20:0:LS_mass:S:	?	×
Step 6 - Final settings and comments		
0 🔆 Set here the number of links to SDref source of data and bibliography records (default 0)		
After you click "Finish":		
(1) 'Controls' page of the Process window will appear. Fill out comments in 'PEname' and 'PEnote' lines. Check the process iterators for corranges and increments.	rect	
(2) Modify the simulation control script 'P_expr', if necessary. Some example scritps can be found in help pages or via the 'Help' 'Scripts' m command. Check also the sampling script in 'Sampling' page of the process window.	enu	
(3) Click on 'Calculate' toolbar button to start the simulation; for the first time, do not use the graphic output. If error messages appear, che fix the scripts or iterators and try the calculation again. After the simulation has finished, look at sampled results in 'xp' and 'yp' fields on 'Re page (can be copy-pasted to commercial spreadsheets).	eck and esults'	
(4) Check and edit the axis and ordinate (plot) names, and click on the 'Plot data' toolbar button to see a customizable Graph Dialog. To plo experimental data over simulated curves (for visual fitting), close the Graph dialog, enter data into xEp and yEp fields on 'Results' page, the the Graph dialog again and customize the plot.	it in open	
Learn more < Back	Canc	el

Process file - hydration of PC + limes cNu: running number can be used for various calulation: <u>here:</u> fraction CaCO₃

Controls Sampling Results Config 13/05/2019, 13:41	describes output of calculated data as table and graph
NeIt 9999 0 Next 1 I 0 J 0 Jp 0	
pSTkey Definition of xp[J] =: xa_[cTau 0 cpXi 0 cXi xp[J] =: xa_[xp[J] =: mod cpH 0 cpe 0 cEh xp[J] =: mod \$ x-axis: fraction of calcite in cement \$ PC contains already 0.6% CaC03 \$ PC contains already 0.6% CaC03	f x-axis: 2 equivalent options {CaCO3}]+0.6; IC[J][1]+0.6; Definition of output on a mass basis e q. C-S-H
<pre>\$ \$ \$ y-axis in g per 100g unhydrated cement yp[J][0] =: phM[{CSHQ}]; yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF) S0.84H}]; yp[J][3] =: phM[{ettringite}]+phM[{S04_C03_AFt}]+phM[{C03_S04_AFt}]; yp[J][4] =: 0; yp[J][5] =: 0; yp[J][6] =: phM[{C4AsH16}]+phM[{S04_OH_AFm}]+phM[{OH_S04_AFm}]; yp[J][7] =: 0; yp[J][8] =: 0; yp[J][8] =: 0; yp[J][9] =: phM[{C4Ac0.5H12}]; yp[J][10] =: phM[{C4AcH11}]; yp[J][11] =: phM[{C1cite}]; yp[J][12] =: phM[{OH_hydrotalcite}]; yp[J][13] =: phM[{aq_gen}]; </pre>	<pre>yp[J][0] =: phM[{CSHQ}]; Ettringite (summarized): yp[J][3] =: phM[{ettringite}] +phM[{CO3_SO4_AFt}]+ phM[{SO4_CO3_AFt}]; Mass pore solution: yp[J][13] =: phM[{aq_gen}];</pre>
Colums yp[J][0], yp[J][1], if you change order, change also the headings below	
pLnam CSHQ Portlandite C3(AF)S0.84H ettringite Image: Ima	45

💹 GEM-Selektor 3 (GEMS3) - Geochemical Equili	brium Modelling by Gibbs Energy M	finimization - [Process :: Remake of t	he new record finished OK. It is rec	ommen					
Modules Record Window Help									
🗊 👼 Process 🔽 📄	- 🕂 🛶 🛶 🏹 📑	• 🥑 🖩 <u>) •</u> 🖕 •	PC:G:PC:0:0:1:20:0:LS_mass:S:						
SysEq	Controls Sampling Re	esults Config 13/05/201	9, 13:41						
	NeIt 9999 0 Nex	(t 1 I 0	J 0 Jp	0					
Process	pSTkey		cTm						
	cTau 0	cpXi 0	cXi 1	cNu					
	срН 0	cpe 0	CEh 0	ст					
	<pre>\$ x-axis: fraction of c \$ PC contains already 0 xp[J] =: xa_[{CaCO3}]+0 \$ \$ y_axis in g per 100g</pre>	calcite in cement 0.6% CaCO3 0.6; unbudrated cement							
Project	<pre>yp[J][0] =: phM[{CSHQ}] yp[J][1] =: phM[{Portla yp[J][2] =: phM[{C3(AF) yp[J][3] =: phM[{ettrin</pre>	<pre>uniputation of the first o</pre>	}]+phM[{CO3_SO4_AFt}];						
	<pre>Yp[J][4] =: 0; Yp[J][5] =: 0; Yp[J][6] =: phM[{C4AsH16}]+phM[{SO4_OH_AFm}]+phM[{OH_SO4_AFm}]; Yp[J][7] =: 0; Yp[J][7] =: 0;</pre>								
	<pre>yp[J][9] =: phM[{C4Ac0.</pre>	.5H12}];	Process	>					
	<pre>yp[0][10] =: phm[{C4Ach yp[J][11] =: phM[{Calci yp[J][12] =: phM[{OH-hy yp[J][13] =: phM[{aq_ge</pre>	<pre>ite}]; ydrotalcite}]; en}];</pre>	Show Graphic	s Dialog during simulation					
	<u>ا</u>		Yes	No Cancel					

In case the convergence error occurs ...

GEM-S	elektor 3 (C	GEMS3) - Geochem	ical Equilibri	um Modell	ing by Gibbs	Energy Mini	mization - [F	Project :: Nur	merical and	Configuratio	n Settings]
🍇 Module	s Record	Window Help									
1 🤤	EqDemc 💌		 	*	🖌 🔜 t	$\wedge \models$	PC:gro	oup:			
Ţ	Image: PC:*: 1	PLists	Controls	Set	tings	Config	27/03/2020, 0)9:40			
SysEq	1 PC	Pa_SPP	Toleranc	es and	controls:	GEMSGUI	v.3.7. 0) and G	EMS3K v.	3.7.0	
Process		Pa_DK	1e-005	Pa_IIM	7000 Pa	LLG	80000 Pa	a_AG	1 1	a DGC	0.01
GtDemo		Pa_DHB	1e-013	Pa_DFY	1e-005	1e-005	1e-005	1e-005	1e-005	1e-005	1e-006
		Pa_DB	1e-017	Pa_DS	1e-020	Pa_XMI	1e-013	1e-013	1e-033	1e-020	1e-005
		Pa_EPS	1e-010	0.001	Pa_GAN	1	1000	0.001	Pa_DG	1000	
UnSpace		Pa_DPV	130	1	0	Pa_DF	0.01	0.01	Pa_DNS	12.05	
Project)	Pa_PE	1 Pa	_PC	2 Pa_PR	RD 2	-5 1	Pa_DKI	1e-010	D	

Modify the graph as you prefer: example

	Customize Graph: addition of limestone to PC ? X	
	0 - Lines/Symbols addition of limestone to PC	
•	Axis Setup Abscissa grid 5 imestone Add unit of x-axis Ordinate grid 5 mass Add unit of y-axis Graph x: 0 10 y: 0 0 Fragment x: 0 0 v: 0 0	Min - max 0 – 0: autoscale
	Label font: Change Font Sans Serif,14,-1,5,50,0,0,0,0,0 Background Change Color OK Cancel Apply Help	

To adapt scale / axis-labelling

Modify the graph as you prefer: example

🔇 Customize Graph: add	ition of lime	estone to PC		?	×				
Graph									
1 - Cumulative									
addition of limestone to PC									
Axis Setup									
Abscissa grid 5	: limesto	ne	Add ur	nit of	x-axis				
Ordinate grid 5	mass		Add ur	nit of	y-axis				
Graph x: 0		10							
y: 0		14	0						
Fragment x: 0		0							
y: 0		0							
Label font: Chan	ge Font	Sans Sei	rif,14,-1,5,50	,0,0,0,0	0,0				
Background Chan	ge Color								
(ОК	Cancel	Apply	He	elp				

Numerical output

Possibility of simple copy and paste of the data into other programs e.g. Excel or Origin

Controls	Sampling	sults Config	27/03/2020, 13:22			
additio	on of limestone to	D PC		pY_Nam	mass]
pX_Nam	limestone	СЅНѺ	Portlandite	C3(AF)S0.84H	ettringite	s
0	0	63.479529	34.639764	17.577815	8.3255595	Γ
1	0.2	63.354146	34.477327	17.542837	10.388585	Γ
2	0.4	63.247179	34.325451	17.464707	12.194956	
3	0.6	63.120692	34.402836	17.429852	12.170592	
4	0.8	63.049524	34.424192	17.266221	12.144797	
5	1	63.2112	34.1883	16.56103	12.313768	Γ
6	1.2	63.205746	34.052285	16.245849	13.082729	Γ
7	1.4	63.312215	33.848959	15.669432	13.424362	Γ
8	1.6	63.246478	33.743932	15.493466	13.502994	Γ
9	1.8	63.118507	33.674382	15.462198	13.475827	Γ
10	2	62.990537	33.604835	15.430939	13.448654	Γ
11	2.2	62.862567	33.535293	15.399679	13.421481	Γ
12	2.4	62.734593	33.465758	15.368418	13.39431	Γ
13	2.6	62.606625	33.396221	15.337159	13.367136	
14	2.8	62.478656	33.326691	15.305898	13.339964	
15	3	62.350689	33.257162	15.274641	13.31279	
16	3.2	62.222721	33.187638	15.24338	13.285618	
17	3.4	62.094754	33.118119	15.21212	13.258446	
18	3.6	61.966785	33.048604	15.180861	13.231273	
19	3.8	61.838819	32.979092	15.149598	13.204102	
20	4	61.710855	32.909582	15.118339	13.176928	
21	4.2	61.582892	32.840076	15.087077	13.149757	
	1					111

Copying data to or from Excel files

We need **decimal points**, not commas !

Beispiel Positiv: 123 456 789.00	Negativ: -123 456 789.0	0	Zahlen Währung Uhrzeit Da
·			Beispiel Positiv: 123'456'789.00
Dezimaltrennzeichen:		~	
Anzahl der Dezimalstellen:	2	\sim	Dezimal <u>t</u> rennzeichen:
Symbol für Zifferngruppierung:		~	Anzahl der Dezimalstellen:
Zifferngruppierung:	123 456 789	~	Cumbel Gir 730-menuerien
Negatives Vorzeichen:	-	~	Symb <u>o</u> i für Zirreingruppierur
Format für negative Zahlen:	-1.1	~	Zifferngruppierung:
Führende Nullen anzeigen:	0.7	~	N <u>eg</u> atives Vorzeichen:
Listentrennzeichen:		~	<u>F</u> ormat für negative Zahlen:
MaRevetore	, Matricele		Führende Nullen anzeigen:
	Methsch		Listentrennzeichen:
Standardziffer:	0123456789	~	Maßsystem:
Ziffernersatz:	Nie	\sim	<u></u> a
Klicken Sie auf "Zurücksetzen", um o Systemstandardeinstellungen für Za und Datum wiederherzustellen.	die hlen, Währung, Uhrzeit Zu	ırücksetzen	

Change your excel to use "." as a decimal point in the control panel of Windows

Positiv: 123'456'789.00	Negativ: -123'456'789.00
Dezimaltrennzeichen:	
Anzahl der <u>D</u> ezimalstellen:	2
Symb <u>o</u> l für Zifferngruppierung:	'
∐ifferngruppierung :	123'456'789 💌
N <u>eg</u> atives Vorzeichen:	•
Eormat für negative Zahlen:	-1.1
Führende Nullen anzeigen:	0,7 💌
Listentrennzeichen:	;
<u>M</u> aßsystem:	Metrisch 💙

-1

Process file - hydration of PC + limestone

💹 GEM-Selektor 3 (GEMS3) - Geochemical Equilibrium Modelling by Gibbs Energy Minimization - [EqStat:: Single Thermodynamic System in Project PC

Modules Record Data Calculate View Print Window Help

4 2	Sing	leSysten	n					•) 🛨 🔚 🖛 🖚 🚿 📑 🧯		6	\checkmark		<u>/ 📥</u>	2	PC	:G:PC:
TA		PC:*:	*;*;*;*;*;	*;						Input: System Definition Results: Equilibrium State								
SysED		3	4	5	6	7	8	<u> </u>		Phase/species	L	T	On/	UC	Add to	BC	JG	G0
	1	PC	0	0	1	20	0			🗄 aq gen	75	a	+	g	0	J	Ţ	0
	2	PC	1000	0	1	20	000			⊡ gas gen	6	g	+	g	0	J	Г	0
Process	3	PC	1001	0	1	20	000			⊡ C3(ĀF)S0.84H	2	s	+	g	0	J	Г	0
A	4	PC	1002	0	1	20	000			E CSHQ	6	s	+	g	0	J	Г	0
	5	PC	1003	0	1	20	000			ettringite-AlFe	2	s	-	g	0	J	Г	0
•••	6		1004	0	1	20	000			ettringite-FeAl	2	s	-	g	0	J	Ţ	0
GtDemo	-		1004	0	4	20	000			monosulph-AlFe	2	S	-	g	0	J	, -	0
	<u> </u>	IPC .	1005	0	1	20	000			= monosulpn-FeAl	2	S	_	g	0		r r	0
╈╋╋┑	8	PC	1006	0	1	20	000	are		rd of the equilibrium ph	ase	å	ser	nhl	age		r	0
GEM2MT	9	PC	1007	0	1	20	000	4.6		SO4 OH AFM	2	-	+	a	0 0		r	0
I 🚣	10	PC	1008	0	1	20	000	at e	ac	h step is automatically s	ave	d	+	a	0	1	ſ	0
	11	PC	1009	0	1	20	000			B SO4 CO3 AFt	2	s	+	a	õ	J	Г	õ
UnSpace	12		1010	0	1	20	000			. CO3 SO4 AFt	2	S	+	q	0	J	Г	0
	12	PC	1010	0	-	20	000	it ca	an	be assessed individually	2	S	+	g	0	J	Г	0
202	13	PC	1011	0	1	20	000			⊕MSH	2	S	+	g	0	J	Г	0
200	14	PC	1012	0	1	20	000	(e.g	,.t	o searchstor "missing ph	ases	S	in t	he (outpu	t) J	Г	0
Project	15	PC	1013	0	1	20	000			- Al (OH) 3mic	1	S	÷	g	0	J	5	0
	16	PC	1014	0	1	20	000			🗉 Gibbsite	1	s	-	g	0	J	Г	0
	17	PC	1015	0	1	20	000			Kaolinite	1	s	+	g	0	J	Г	0
	10		1016	0	4	20	000			Graphite Graphite	1	s	+	g	0	J	Г	0
	18	PC	1010	U	1	20	000			■ Mayenite	1	s	+	g	0	J	Г	0
	19	PC	1017	0	1	20	000			Belite	1	S	+	g	0	J	-	0
	20	PC	1018	0	1	20	000			H Aluminate	1 1	S	+ +	g	0	U .7) F	0

Background: Limestone addition to PC

Formation of <u>monosulfoaluminate in carbonate free paste</u>, whereas <u>monocarboaluminate+AFt</u> are predominant <u>in calcite blended paste</u>

Lothenbach ea 2008, CCR 38

Good agreement between experiments and calculations

Background: Limestone addition to PC

Hydration of Portland cement

1) Hydration of PC - single system

2) Influence of limestone on hydration of PC – process file

3) Mass based -> volume based output -

4) Influence of fly ash on hydration of PC – process file

Guided tutorial

Individual work

The past example has shown that adding limestone causes significant mineralogical changes during cement hydration.

While these changes affect the qualitative composition of the phase assemblages they also affect the quantities of phases present.

Thus an influence on the specific volumes of the hydrated phases in dependence of the limestone content is likely.

Modification of the existing process to plot specific volumes of the individual phases present in the chosen example

Example calculation of volume changes:

Modification of the existing process to plot specific volumes of the individual phases present in the chosen example

Calculation of volumes is based on individual molar volumes of each phase included in the database

Ettring	rite				
Ca6A12(SO4)3(OH)12(H2O)	26			
MO	1255.11	Zz O	ab		
DOV	70.703		0		
GOd	-15205936.09				
HOd	-17535007.5				
SOd	1900				
CpOd	2174.36		0		
PrTr	1		25		
LamST					
BetAlp					
Lothenb	ach_ea:2007:pap:		logK -4	14.9; S	
Ederova	_ea:1979:pap:		Cp		
Taylor:	1997:book:		V0 (der	ns 1775 kg/m3)	
VOd [0,0] :	Molar volume V0 of Dep	endent Com	ponent at	standard state (J/ba	r)

For example ettringite:

Theor. density: 1.775 g/cm³ (derived from fitted unit cell size)

Molar volume

= 1255.11g/mol / 1.775g/cm³ = 707cm³/mol

 $1 \text{cm}^3/\text{mol} = 10^{-1} \text{J/bar} \rightarrow \overline{70.7 \text{ J/bar}}$

Modification of the existing process to plot specific volumes of the individual phases present in the chosen example

<u>Hints:</u>

- Clone "old" process (ensure that you are in process mode) and save it under a different name (suggested name: LS_Vol).
- Select same parent system.
- Only change the output part of the process file to calculate volume instead of mass. example:

<u>mass:</u> yp[J][0] =: phM[{CSHQ}]; volume: yp[J][0] =: phVol[{CSHQ}];

• Efficient: copy to word and use "replace"

yp[*J*][*0*] =: *Xa*[{*CSHQ*}]; => *Moles*

• Change y-axis labelling to cm³/100g and make a cumulative plot.

Controls Sa	ampling Results	s <u>Co</u>	onfig 13/05/20	19, 15:59							
NeIt 9999	9 54 Next	0	I 0	J	53	Jp		53			
pSTkey PC:G:	PC:0:0:1:20:0:	:					cTm	10	53 cNV	0	
cTau	0 ср	Xi	0	cXi			1	cNu		10	
срН	0 cp	e	0	cEh			0	сТ		293.15	
• •• ••• • • • -											

Possible Links: Thermodynamics vs. engineering properties

one example of a good correlation between <u>predicted</u> changes of relative porosity and <u>measured</u> compressive strength

Example calculation of pore solution composition:

- Clone "old" process (ensure that you are in process mode) and save it under a different name (suggested name: LS_sol).
- Select same parent system.
- Only change the output part of the process file to calculate ionic concentrations. Use the recipe wizard.
- Plot aqueous composition as total molality [mmol/kg] and pH

Aqueous composition:	this example
yp[J][0] =: <mark>m_t</mark> [{Ca}];	total concentration (as measured e.g. by ICP-OES or IC)
yp[J][0] =: <mark>lgm_</mark> t[{Ca}];	log total concentration (as measured e.g. by ICP-OES or IC)
yp[J][0] =: <mark>my</mark> [{Ca+2}];	species concentrations
yp[J][0] =: <mark>10^lga</mark> [{Ca+2}];	species activity (as measured by ion selective electrode)
yp[J][0] =: pH; yp[J][0] =: IS; yp[J][0] =: my[{OH-}];	gives <i>pH ! Very sensitive to temperature</i> ionic strength hydroxide concentration (molal)

NoT+	0000	Nov	-	1 т	0	т	0	In		0
Neit	3333	Nex		± [±	•	0	0	op		•
pSTkey P	C:G:PC:0:0	:1:20	:0:						cTm	
cTau		0	cpXi		0	cXi			1	cNu
срн		0	cpe		0	cEh			0	ст
	xa [{CaCO	3}]+0	.6;							

pH - value

Fig. 21. The relationship between Al concentration in the pore solution and chemical shrinkage and degree of hydration of slag at 28 days. Note, there is \pm 2% error associated with the method for measuring the DoH of slag.

👂 Empa

Materials Science and Technology

Adu-Amankwah ea 2017, CCR 100

Limestone: sulfate ↑ aluminium ↓

- ⇒ High Al suppresses slag and alite reaction
- \Rightarrow Limestone accelerates

Hydration of Portland cement

- 1) Hydration of PC single system
- 2) Influence of limestone on hydration of PC process file
 - a) Mass based output
 - b) Volume based output
 - c) Composition of aqueous phase
- 3) Influence of fly ash on hydration of PC process file

Process file - hydration of PC + fly ash

Example:

- Modification of the existing process to plot a) masses and b) specific volumes of the individual phases present in the chosen example
- Use an "artificial fly ash" with 100% glass content and simplified composition
- Assume 100% hydration of the fly ash and congruent dissolution
- Vary fly ash content between 0 and 20% in steps of 0.4%
- Create a predefined composition for fly ash (FA)

<u>Hints:</u>

- Clone the project with limestone addition (mass-based), name it e.g. FA_mass
- Modify the input part:
 - Vary fly ash content: modC[J][0] =: cNu*0.4;
 - Fly ash quantity as xa_[{FA}] =: ...
 - Remember that there is no limestone in the fly ash
- Check for missing phases (look at the calculated single files). Add them to the output part. Label the graph correctly.
- When the mass-based file runs smoothly, clone the file, name it e.g. FA_Vol and modify the output part to display specific volumes

Composition of fly ash

XRF-analysis ^a [wt%]		Mineralogical p	hase composition ^b [wt%]	Glass comp	osition [wt%]	-
	F1		F1		F1	
SiO ₂	50.9	Mullite	8.2	SiO ₂	54.4	We only consider
Al ₂ O ₃	24.7	Quartz	7.0	Al ₂ O ₃	24.8	we only consider
Fe ₂ O ₃	7.3	Hematite	0.7	Fe ₂ O ₃	5.7	the «bia four»
CaO	3.7	Magnetite	0.8	CaO	4.6	
MgO	1.8	Anhydrite		MgO	2.1	
K ₂ O	3.9	Periclase		K ₂ O	4.9	
Na ₂ O	0.9	Lime		Na ₂ O	1.1	
TiO ₂	1.1	Amorphous	83.3	TiO ₂	1.4	
Mn_2O_3	0.1	-		Mn_2O_3	0.1	
P ₂ O ₅	0.8			P_2O_5	0.9	
SO ₃	0.4 ^c			SO ₃	0.0	
SrO						
LOI	3.5					
С	2.7 ^d					
Sum	99.1		100.0		100.0	

average glass composition

Deschner et al., Cem Concr. Res. 42 (2012), 1389-1400.

Two options for input:

Glass composition [wt%]						
	F1					
SiO ₂	54.4					
Al ₂ O ₃	24.8					
Fe ₂ O ₃	5.7					
CaO	4.6					
MgO	2.1					
K ₂ O	4.9					
Na ₂ O	1.1					
TiO ₂	1.4					
Mn_2O_3	0.1					
P_2O_5	0.9					
SO ₃	0.0					

Option 1: Input in g oxide

recalculation in mol-%

	in glass	normalised	molar mass	normalised
	g/100g	g/100g	g/mol	mol/100g
SiO2	54.4	60.6	60.08	1.00943076
AI2O3	24.8	27.6	101.96	0.27116236
Fe2O3	5.7	6.4	159.69	0.03979282
CaO	4.8	5.4	56.08	0.0954203
total	89.7	100		

recalculation in atom-%

	normalised	
	mol/100g	
Si	1.00943	=> Different options for
Al	0.54232	input in predefined
Fe	0.07959	composition
Са	0.09542	
0	3.04715	

Option 2: Input in mol elements

Make a predefined composition for fly ash

V GEM-S	elektor 3 (GEMS3) - Geochemical Equilibrium Modelling	g by Gibbs Energy Minimization - [EqStat:: Sing	le Thermodynamic System in Project	PC]
I Module:	s Record Data Calculate View Print Window Help		V	
	SingleSystem		〕 🚽 🗸 🗸 🔚 🚺 📥	PC:G:PC_:0:0:1:20:0:
1	PC:*:*:*:*:*:	Input: System Definition Results: Equilib	orium State	
SysEq	3 4 5 6 7 8	Phase/species	L T Amount (mol)	logSI/Activity Co
Process GtDemo	2 PC_ 1000 0 1 20 000 3 PC_ 1001 0 1 20 000 4 PO_ 1002 0 1 20 000 5 PC_ 1002 0 1 20 000 6 PC_ 1004 0 1 20 000 7 PASSOCiAted 0 1 20 000 8 PC_ 1006 0 1 20 000	<pre>g gas_gen g gas_gen g gas_gen s C3 (AF) S0.84H s CSHQ g of the database g ettringite-FeAl g gas_gen g</pre>	6 g 0.0031839841 2 s 0.040769951 6 s 0.44660885 2 s 0 2 s 0 2 s 0 2 s 0	-1.115e-9 -1.148e-9 -5.789e-10 -1 -1 -1
UnSpace	9 PC_ 1007 0 1 20 000 10 PC_ 1008 0 1 20 000 11 PC_ 1009 0 1 20 000 12 PC_ 1010 0 1 20 000 13 PC_ 1011 0 1 20 000 14 PC_ 1012 0 1 20 000 15 PC_ 1013 0 1 20 000 16 PC_ 1014 0 1 20 000 17 PC_ 1015 0 1 20 000 18 PC_ 1017 0 1 20 000 19 PC_ 1018 0 1 20 000	<pre> s straetlingite s ettringite s straetlingite s s ettringite s s SO4_OH_AFm s SO4_CO3_AFm s s SO4_CO3_AFt s s co3_SO4_AFt s hydrotalc-pyro s MSH s Al(OH)3am s Al(OH)3mic s Gibbsite s Gibbsite s Graphite s Mavenite</pre>	2 s 0 2 s 0.0097500224 2 s 0 2 s 0 2 s 0 2 s 0 2 s 0 2 s 0 1 s 0	-1.43 8.224e-9 -1 -1 -1 -1 -9.748 -4.257 -3.33 -2.466 -1.943 -13.82 -85.21 -135.1

Make a predefined composition for fly ash

T P	Compos	-	+			📦 🏹 💽 🖌 🚃	1 N	/ 📥	16		C:MIN:Portland_ce	ment_:	
	X *:*:*:		Compo	os :: P	Prede	fined composition objects (PCO)	• • • • •					- 0
IComp	-												
			Pa	ne 1	_	Settings 01/02/2018. (9:11						
	20 CaSO4_05H2O		1	ger	_								
DComp	21 CaSiO3		DC	1.11 ± 1	h 1.	imostono							
2.2	77 Fe2O3		FC	WIU	II I.	Imescone							
-	23 FeCO3		Cor	npos	iti	on from Lothenbach	ea	b:200	38:	pap:			
ReacDC	24 FeO		,										
1A	25 FeOOH		0.0	06008	843	0	0			0	0	0	0
∐ +	26 FeS									-			
RTparm	27 Gypsum												
00	28 H2	_			TC	DCO			TC	CTO	CT		
	29 H2S	_		SVI		PCO		SVI	IIC.	CIC			
Unace	30 H2SO4		0	AL	•••	0.05907926	0	AL		M		0	
	31 K2CO3		1	C		0.0036313673	1	C		М		0	
Compos	37 K2O	-	2	Co		0 700/1792	2	C 2		м		0	
compos	33 K2SO4		2	Ca		0.70041792	2	La		P1		0	
\checkmark	34 KOH		3	Fe		0.024634934	3	Fe		М		0	
	35 Mg(OH)2		4	K		0.010179733	4	K		м		0	
	36 Mg3Si2O5(OH)4		-			0.007451007	-					-	
	37 MgCO3	-	5	Mg		0.027451387	5	Mg		М		0	
	X MgU		6	Na		0.0083306518	6	Na		М		0	
\	49 MgSU4	_	7	0	2.0	1.3359998	7	0		м		0	
\	40 Na2CO3	-	-		•••	1.0000000	-		•••				
	41 Na20	-	8	S	•••	0.017580691	8	S		М		0	
		-	9	Si		0.20664962	9	Si		М		0	
	A PC												
	14 503												1
	46 503												

Click here to assess the list of predefined compositions and to create a new one

Use «Record – New(Clone)» from the pull-down menue or click here («Record – Remake» allows you to change an existing record)

🔛 GEM-Se	💹 GEM-Selektor 3 (GEMS3) - Geochemical Equilibrium Modelling by Gibbs Energy Minimization															
Modules	Modules Record Record List Database Files Window Help															
1	Compos 🔄 📩 🕂 🚔 🛶 💉 🖓 🖌 🧱 😥 PC:MIN:Portland_cement_:															
		::*:	<u> </u>	Comp	os :: Pre	defined compos	ition objects (l	PCO)	ŧ.						_ 0	
IComp		1														
	1 7	TCasO4		Pa	ae 1	Settings	01/02/2018, 0	9:11								1
	20	CaSO4_05H2O		1												-
DComp	21	CaSiO3		PC	with	limestone										-
Q 26	22	Fe2O3	_	-	WICH											-
8	23	FeCO3	_	Col	mposit	ion from Lo	othenbach_	ea_	b:200	18:	pap:					_
ReacDC	24	FeO	_													_
	25	FeOOH	_	0.0	060084	3 ()	0			0	0	0		0	
RTnarm	27	FeS	_			<u>.</u>										
	20	uypsum up	-													
	29	H2S	_		symI	C PCO			svn	nIC	CIc	CI				
Phase	30	H2SO4	-	0	Al .	0	05907926	0	Al		М		0			
<i>i</i> h	31	K2CO3		1	C	0.00	36313673	1	C		м		0			
	32	К2О		1	· ·		50515075	1		•••	m		0			
Compos	33	K2SO4		2	Ca .	0	.70041792	2	Ca		М		0			
	34	КОН		3	Fe .	0.0	24634934	3	Fe		М		0			
	35	Mg(OH)2		1	K	0 (10179733	1	K		м		0			
	36	Mg3Si2O5(OH)4		-				-								
	37	MgCO3		5	Mg .	0.0	02/45138/	5	Mg		М		0			
	30	MgO		6	Na .	0.00	083306518	6	Na		М		0			
	10	MgSO4	-	7	0.		.3359998	7	0		М		0			
	40	Na2CO3				0.0	17500601		-	1655	M		0			
	42	Na2SO4		8	5.	0.0	11280691	8	5		M		0			
	43	NaOH		9	Si .	0	20664962	9	Si		М		0			
	44	02														
	45	PC														-
	4h	503				reate a r	lew en	try	/ it	is	he	est to cl	one an			
	47	SiO2						<u> </u>								-
			•	(exist	ing one	- we c	ho	se	to	cl	one the	entry	PC		

nd Technology

Make a predefined composition for fly ash: option 1, add g oxides

Compos: Please, set a new record key FA:MIN:Fly-ash: FA Image: Set of the set	Can be used to add g oxides 4 as CaO Al2O3 SiO2 Fe2O3
Fly-ash Comment to PCO description Ok Reset From List Help Cancel	Will have to written manually
GEM-Sele for Compos Setup: FA:MIN:Fly-ash: Step 1 - Predefined Composition Object (PCO) configuration Compos record contains data for a Predefined Composition Object (PCO), which describes a salt, the air, a mineral, a rock, a natural water, etc., treated as a single named entity in the chemical system recipe. PCO can be configured according to the source data: as IC or DC amounts/concentrations; as user-defined formula (UDF) units; or as a large UDF entered into a text field. Upon re-calculation, all given quantities will be added into a single IC mole amounts PCO vector, optionally scaled to a given total mass (in kg) or total number of moles. PCO input data configuration Image: Use amounts of Independent Components (IComp) in this PCO definition (default)? Use formulae of Dependent Components (from DComp/ReacDC records) in this PCO? Image: Select units of measurement for this PCO definition? Image: Select units of measurement for this UDF quantity (default: M)	Step 2 - Additional settings and next actions Optional 1 - Set here the number of links to SDref bibliography records (default 0) Use a vector of data uncertainties in this PCO definition What will happen after you click "Finish" (1) For a PCO definition using IComp amounts, a list of available IComp records will be shown, asking you to mark the desired ones. (2) In a PCO definition using DC formulae, a list of available ReacDC/DComp records will be shown, asking you to mark the desired ones. (3) Page 1 of the 'Compos' window appears. Fill out BCname field and (optionally) BCnote lines. Then enter data and formulae wherever needed, check units of amount/ concentration. (4) Click on 'Calculate' toolbar button to compute the PCO vector. Check or enter the normalization values in MasVol[0] and MasVol[6] fields and calculate again, if needed. Setting both fields to zero disables the normalization of PCO to the total mass or total
Learn more < Back Next> cancel	Learn more < Back Finish Cancel

Make a predefined composition for fly ash: option 1 and 2

🐴 Plea	🕌 Please, mark IComp keys for PCO definition 🤰 X							
Plea	ase, m	ark one or more record keys. Filter: *:*:*:						
Al	е	Aluminum						
С	e	Carbon_						
Ca	е	Calcium_						
Fe	e	Iron_						
Н	h	Hydrogen_						
K	e	Potassium_						
Mg	e	Magnesium_						
Na	e	Sodium						
0	0	Oxygen						
S	e	Sulfur						
Si	e	Silicon						
Zz	z	Electric_charge_						
Se (sa	elec amo	t the elements you need + O e procedure for input option 1 and 2)						
	Ok	Set Filter Select All Clear All Help	Cance	1				

Make a predefined composition for fly ash: option 1, add g oxides A:MIN:fly-ash: P _ 1 _ 1 _ 1 3) Once everthing is entered, Compos :: Calculation finished OK (elapsed time: 0 s). recalculate ... Settings 26/03/2020, 15:46 Page 1 ... and save new record. 1) FA \Rightarrow Fnter 0.1 Composition from Deschner ea b:2012:pap: Normalises everything 0 4.77219 0.1 0 0 0 0 to 100 g (0.1 kg) SYMIC PCO symIC CIC CI A1 0.54138197 Al ... M 0 0 1 0.096295479 1 ... M Ca Ca 2) Enter values 2 0.080156203 2 Fe Fe ... M 0 Composition normalised to 100g 3.0457686 3 ... M 3 0 0 1.0085829 Si ... M 4 4 0 5i ... Settings 05/02/2018, 09:53 Page 1 + - -Μ 5 + _ 0 4 1 0 0 Deschner ea:2012:pap: FA compositio Write CaO, Al2O3, AUc CA formU SiO2, Fe2O3 CaO 5.4 0 g SiO2 60.6 1 g Case sensitive! A1203 27.6 2 g 80 3 Fe203 6.4 g

Make a predefined composition for fly ash: option 2, mol elements

Compos: Please, set a new record key FA:MIN:Fly-ash: FA MIN Code of PCO type { AQ RO GA FL HC PM MIN } Fly-ash Ok Reset From List Help Cancel MIN Code of PCO description	/e use
A GEM-Selek Compos Setup: FA1:MIN:Fly-ash:	2 X
Step 1 - Predefined Composition Object (PCO) configuration Step 2 - Additional settings and next actions	
Compos record contains data for a Predefined Composition Object (PCO), which describes a salt, the air, a mineral, a rock, a natural water, etc., treated as a single named entity in the chemical system recipe. PCO can be configured according to the source data: as IC or DC amounts/concentrations; as user-defined formula (UDF) units; or as a large UDF entered into a text field. Use a vector of data uncertainties in this PCO definited to the source data and the provided to the source data.	ny records (default 0) tion
vector, optionally scaled to a given total mass (in kg) or total number of moles.	
PCO input data configuration (1) For a PCO definition using IComp amounts, a list of shown, asking you to mark the desired ones.	available IComp records will be
Use amounts of Independent Components (IComp) in this PCO definition (default) (2) In a PCO definition using DC formulae, a list of available to the shown asking you to mark the desired ones	ilable ReacDC/DComp records will
Image: Set number of user-defined formula units for this PCO definition (0 by default) (3) Page 1 of the 'Compos' window appears. Fill out BC	name field and (optionally)
Optional: Input user-defined formula (UDF) text BCnote lines. Then enter data and formulae wherever in concentration.	needed, check units of amount/
Use a user-defined formula text input field for this PCO definition?	CO vector. Check or enter the and calculate again, if needed.
M moles Select units of measurement for this UDF quantity (default: M) Setting both fields to zero disables the normalization of amount of moles, respectively.	f PCO to the total mass or total
0 Enter here the UDF quantity or amount in selected units (default: 1)	
Learn more < Back Next> Cancel	< Back Finish Cancel

Make a predefined composition for fly ash: option 2, mol elements

ow I	-elp	, o, oloos energy			Culculation IIII.	onca on (clapsea an	ic. 0.001 0).j			
			× 🗣 🖌		V 📙 😧	FA1:MIN:Fly-ash:			-	
-										
]	P	age 1 Sett	tings 05/02/2018,	10:50					_	
	FA	, simplifie	d, normalised	to 1	.00 g					leulation in
	Co	mposition f	rom Deschner_e	a:20	12:pap:				reca	
Г		0.1	0	0	0	0	0	0 0		atom-%
L			_/							normalised
		symIC PCO	_/	1	symIC CI	c CI				mol/100g
	0	Al	0.54229563	0	Al M	0.54	1232		Si	1.00943
	1	Ca	0.095415713	1	Ca M	0.09	9542		Al	0.54232
	2	Fe	0.079586424	2	Fe M	0.07	1959		Fe	0.07959
	3	0	1 0093846	3	0 M	3.04	1715		Са	0.09542
	4		1.0055040	4	JI II	1.00	///		0	3.04715
										0.01720
									=> En	ter values
		/								

When everthing is entered, recalculate and save new record.

equivalent options, minor difference due rounding off (number of digits ...

W Modelling Projects	? ×
GEM-Selektor modelling projects: Select one to open, or click 'New	Project' to create
AluSiOMSA MUSICAluminaSilica AragCalc Aragonite-Calcite BermanMSS TestsMultiSiteSolidSolutions C3A GEMS2019	Compos ×
Ca-Sr-CO3 Solid solutions CalDolCol2GEM2MT-test CalcDolo GEMS3K-test-example CarbSea CarbonatesAndSeawater	Action?
Flowline test project gem2mt GEOTHERM Soultz_1 Kaolinite Test-JNC Kinetics Mineral-Ag-Reactions	Input Recipe of Single Thermodynamic System: PC:G:PC:0:0:1:20:0:
Kvanite MvlstProject PC GEMS2019 PitzTest NaC1_CO2 SIT_portl BU181104 Solvus test project solvus TestPNTDB Test-PSI-Nagra-TDB-07-12 TestPD test project folded	tname PC Property Selection
TestSUP98 Test-SUPCRT98-linked	DComp (xd_) Al(OH)3 CaCO3 H2SO4 PC IComp (xd_) Al2O3 CaMg(CO3)2 K2CO3 SO3 Phase (xp_) Al2Si2O5(OH)4 CaO K2O SiO2 Kin.lower (dll_) Aqua CaSO4 K2SO4 SiO2 G0 shift (gEx_) C2S CaSIO3 Mg(OH)2
	Rem Other Inputs C3A FA Mg3Si2O5(OH)4 C3S Fe2O3 MgCO3
 □ Change file configuration of the selected project □ Create a new project using the selected one as a template 	nplex C4A3s FeCO3 MgO C4AF FeO MgSO4 CA FeOOH Na2CO3
Make a new project: • by copying records from default database	the c CA2 Fes Na2O CH4 Gypsum Na2SO4 CO2 H2 NaOH Ca(OH)2 H2S O2
Open Project New Project Learn mo	re 4
Then we had to your project	83

Then go back to your project

Image: Controls Sampling Results Config 27/03/2020, 13:29 (use number of steps = 51)												
addition of FA to PC change to 0% FA as start GEMS tutorial up to 20% FA Change to 2000 to												
	iTm	overwrit	e _i PC-LS	iTC	iNv	iТаu	ipXi	iNu		ipH	[
0	2000	0	1	20	0	0	0		0	0		
1	2100	0	1	20	0	0	0		20	0		
2	1	0	0	0	0	0	0		0.4	0		
cTm	1000	0	1	20	0	0	0		0	0		

```
$ amount of FA,
                                                                                     modC[0]
$will written in 1st column; cNu = calculated number
                                                                                 0
modC[J][0] =: cNu;
xa [{FA}] =: modC[J][0];
                                                                                 1
                                       We have calcite only in the PC
                                                                                 2
$ amount of PC
                                                                                 3
xa [{PC}] =: 100-modC[J][0];
                                       We now add fly ash instead of limestone
                                                                                 4
                                       xa_[{FA}] =: modC[J][0];
$PC written in 2nd column;
                                                                                 5
modC[J][1] =: 100-modC[J][0];
                                                                                 6
```


Controls Sar	npling Res	ults	Config	27/03/2020,	, 14:40						
NeIt 9999	15 Next	1	. I	0	J	14	Jp	14			
pSTkey PC:G:PC:0:0:1:20:0: CTm											
cTau	0	cpXi		0	cXi			1 cNu			
срН	0	cpe		0	cEh			0 ст			
<pre>\$x axis: total fraction of FA in cement xp[J] =: xa_[{FA}]; Change comment, change x-axis</pre>											
<pre>\$y-axis in g per 100 g unhydrated cement yp[J][0] =: phM[{CSHQ}]; yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF) \$0.84H}];</pre>											
<pre>yp[J][4] =: phM[{straetlingite}]; yp[J][5] =: 0; yp[J][6] =: phM[{C4AsH16}]+phM[{SO4_OH_AFm}]+phM[{OH_SO4_AFm}]; yp[J][7] =: 0;</pre>											
<pre>yp[J][8] =: 0; yp[J][9] =: phM[{C4Ac0.5H12}]; yp[J][10] =: phM[{C4AcH11}]; yp[J][11] =: phM[{Calcite}]; yp[J][12] =: phM[{OH-hydrotalcite}];</pre>											

πA		PC:*:*	*:*:*:*	.*.*.				Input: System Definition Results: Equilibrium State								
		3	4	5	6	7 🔺						·				
Syseq	83	PC	2027	0	1	20		Phase	/species		L	1	Amount (mol)	logSI/Activity	Concentration	Act:
		PC	2028	0	1	20		a	aq gen		6	9 a	0.732848	-1.328e-08		
	F		2020	•	·	20		g	gas_gen	0.041	6	g	0.0031837365	-9.027e-10		
Process	85	PC	2029	0	1	20		t S	C3 (AF) S	0.84H	2	S	0.048804933	-3.045e-10		
1000	86	PC	2030	0	1	20		+ S	straetl	ingite	2	s	0.023842347	-1.534e-07		
	97	PC	2031	0	1	20		±	ettring.	ite	2	3	0	-0.5952		
GtDemo		rc –	2031	•	-	20		±	SO4 OH	AFm	2	s	0.013212363	1.06e-07		
	88	PC	2032	0	1	20		+ S	OH_SO4_A	AFm	2	S	0.013212363	1.06e-07		
•	89	PC	2033	0	1	20		+ S	so4_co3	AFt	2	S	0	-1		
			2024	0	1	20			CO3_SO4	AFt	2	S	0	-1		
GEM2MT	90	PC	2034	0	-	20		÷ S	hydrota	lc-pyro	2	S	0	-10.41		
I	91	PC	2035	0	1	20		±	MSH		2	0	resence	of strat	linaite	(SS)
7	92	PC	2036	0	1	20		t S	AL (OH) 33	am mic	1			-2.501		
UnSpace			2027	•	4	20			Gibbsit	e e	1	2	0	-1.175		
SAL	93	PC	2037	0	-	20		+ S	Kaolini	te	1	s	0	-11.24		
2205	94	PC	2038	0	1	20		±	Graphit	e	1	s	0	-85.78		
Project	95	PC	2039	0	1	20		±	Mayenite	е	1	S	0	-128.2		
rioject	<u> </u>			-				+ S	Belite		1	s	0	-2.062		
	96	PC	2040	0	1	20		± 5	Alumina	te	1	S	0	-36.91		
	97	PC	2041	0	1	20		±	Alite		1	S	0	-14.64		
	00	DC	2042	0	1	20		÷ s	Ferrite		1	S	0	-37.64		
	90	FC	2042	U	1	20		±	CA		1	S	0	-10.35		
	99	PC	2043	0	1	20		+ S	CA2		1	S	0	-13.35		
	100	PC	2044	0	1	20		t S	C2AH/5		1	5	0	-1.789		
				-					CANH11		1	2	0	-0.0313		
	101	PC	2045	0	1	20			C4AH13		1	9	0	-1 339		
	102	PC	2046	0	1	20		+ s	C4AH19		1	s	0	-1.034		
	103	PC	2047	0	1	20		±	CAH10		1	s	0	-2.497		
	-105		2017	-				+ S	C4AsH10	5	1	s	0	-1.483		
	104	PC	2048	0	1	20										•
	105	PC	2049	0	1	20	-									

System: T = 293.15 K; P = 1.00 bar; V = 0.1509 L; Aqueous: built-in EDH(H); pH = 13.313; pe = 7.831; IS = 0.185 m

Check solids in single calculations

20 🔻

Þ

1

2050 0

106 PC

Controls	Sampling	Res	sults	Config	27/03/2020,	15:11				
NeIt	9999 51	Next	-	0 I	0	J	50 Jp	50		
pSTkey F	C:G:PC:0:0:	1:20	:0:					cTm	2050	
cTau		0	cpXi		0	cXi		1 cNu		
срН		0	cpe		0	cEh		0 cT		
<pre>\$x axis: total fraction of FA in cement xp[J] =: xa_[{FA}]; \$y-axis in g per 100 g unhydrated cement yp[J][0] =: phM[{CSHQ}]; yp[J][1] =: phM[{Portlandite}]; yp[J][2] =: phM[{C3(AF) \$0.84H}]; yp[J][3] =: phM[{ettringite}]+phM[{S04_C03_AFt}]+phM[{C03_S04_AFt}]; yp[J][4] =: phM[{ettringite}]; New phase: (CaO)2Al2O3SiO2(H2O)7-8 yp[J][5] =: phM[{C3AH6}]; katoite: (CaO)3Al2O3(H2O)6 yp[J][6] =: phM[{C4AsH16}]+phM[{S04_OH_AFm}]+phM[{OH_S04_AFm}]; yp[J][7] =: 0; => Adapt also y-axis labels yp[J][9] =: phM[{C4Ac0.5H12}]; yp[J][1] =: phM[{C4AcH11}]; yp[J][1] =: phM[{C4Lcite}]; yp[J][12] =: phM[{OH_bbydrotalcite}]:</pre>										

90

What happens, when we replace 5% of PC by limestone?

Controls Sampling Results Config 27/03/2020, 15:27											
addition of FA to PC+Cc											
GEMS ti	GEMS tutorial										
imm iv ip imc invi invi invi											
0	2000	0	1	20	0	0	0	0	1011		
1	2100	0	1	20	0	0	0	20			
2	1	0	0	0	0	0	0	0.4			
cTm	2000	0	1	20	0	0	0	0			
<pre>\$ amoun \$will v modC[J] xa_[{F2 \$ amoun xa_[{P0 xa_[{Ca \$PC wri modC[J]</pre>	<pre>\$ amount of FA, \$will written in 1st column; cNu = calculated number modC[J][0] =: cNu; xa_[{FA}] =: modC[J][0]; \$ amount of PC xa_[{PC}] =: 100-modC[J][0]-5; We substract the 5% LS from the PC xa_[{CaCO3}] =: 5; and add 5% CaCO₃. \$PC written in 2nd column; modC[J][1] =: 100-modC[J][0]-5;</pre>										

Addition of fly ash to PC:

- Less portlandite, more C-S-H (Ca/Si of C-S-H decreases, not shown)
- Ettringite destabilized, formation of monosulfate
 - => ternary blends with fly ash and limestone favourable to stabilize
 ettringite (see e.g. de Weerdt et al., Cem. Concr. Res. 41 (2011), 279-291)
- Strätlingite appears after consumption of portlandite

