

GEMS workshop 2020

Lecture 02b

Single system - Hydration of C₃A (Pt. 2)

Barbara Lothenbach, Frank Winnefeld, Bin Ma, Zhenguo Shi

Hydration of C₃A

- 1) Simulation of reaction $C_3A + CaO + CaSO_4$ Guided tutorial (Lecture 02)
- 2) Simulation of reaction $C_3A + CaO + CaCO_3$
- 3) Simulation of reaction $C_3A + CaCO_3$
- 4) Simulation of reaction $C_3A + CaO + CaSO_4 + CaCO_3$

Sempa 🚱

Science and Technolog

Experimental problem part 2:

Reaction of C₃A with calcium carbonate

5 g C₃A + 1.86 g CaCO₃ + 2.5 g CaO + 50 g H₂O

+ 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation)

molar ratio $SO_3/AI_2O_3 = 0$, molar ratio $CO_2/AI_2O_3 = 1$

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

1) Create a new system within the same project

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

2) Enter initial system composition

Recipe wizard

Property	- Selection		Recipe	Input	Desc of ex	ription periment		
DComp (xd_)	AI(OH)3 AI2O3	Gypsum H2	1 xa	operty	Name C3A	Quantity 5	q	Units
Phase (xp_)	Aqua C12A7	H2S H2SO4	2 xa_		CaCO3	1.86	g	
Kin.upper (dul_)	C3A C4A2-	02	3 xa_		CaO	2.5	g	
Other Inputs	CA	303	4 xa_		Aqua	50	g	
	CH2 CH4 CO2 Ca(OH)2 CaCO3 CaO CaSO4 CaSO4_05H2O		5 xa_		02	0.1	g	J
Input quantities ovector	of Compos(itions) co	ontributing to B_				1]	<u>)</u>

Experimental conditions: React 5 g C_3A , 1.86 g $CaCO_3$ and 2.5 g CaO with 50 g water (add 0.1 g O_2 to simulate gas phase)

Experimental conditions: React 5 g C_3A , 1.86 g $CaCO_3$ and 2.5 g CaO with 50 g water (add 1 g O_2 to simulate gas phase)

Process

GEM2MT

UnSpace

Project

3) Calculate equilibrium 📡

Formation of monocarboaluminate, small amounts of calcite and portlandite

-Selektor 3 (GEMS3) -	Geochemi	cal Equilibrium Modelling b	y Gibbs Energ	gy N	linimization - [EqStat:: S	ingle Thermodynamic Syst
les Record Data Ca	alculate V	iew Print Window Help				
SingleSysten 💌) 🛨 🔚		J 🗐 🕻	1	V 🖽 🗠 🚔	C3A:G:C3A-Cc:0:0:1
a *:*:*:*:	Input: Syste	em Definition Results: Equili	brium State			
3	Phase/	species	т.	т ,	Amount (mol)	logsT/Activity
1 C3A-Cc 0	Thuse,	Species	20	<u> </u>	2 520022	7.0600.00
2 624-65 0	a a	ay yen	29	a	2.329022	-5 5240-09
2 C3A-C5 0	9	ettringite	2	y e	0.0031033437	-9.132
		SO4 OH AFm	2	0	0	-9.132
		OH SO4 AFm	2		0	-1
		Al (OH) 3am	1	5	0	-3 934
	÷ s	Al (OH) 3mic	1	s	0	-3.024
		Gibbsite	1	5	0	-2 571
	t s	Graphite	1	s	0	-82.21
	T S	Mavenite	1	s	0	-141
	t s	Aluminate	1	s	0	-38
	+ s	CA	1	s	0	-12.56
	+ s	CA2	1	s	0	-18.23
	+ S	C2AH75	1	s	0	-3.989
	± s	C3AH6	1	s	0	-2.489
	+ s	C4AH11	1	s	0	-4.676
	+ 5	C4AH13	1	s	0	-2.942
	+ s	C4AH19	1	s	0	-2.741
	+ s	CAH10	1	s	0	-4.99
		C4AsH105	1	s	0	-5.48
	+ s	C4AsH12	1	s	0	-4.135
	+ s	C4AsH14	1	s	0	-4.109
	+ 5	C4AsH16	1	s	0	-4.195
	+ s	C4AsH9	1	s	0	-7.5
	+ s	C4AcH9	1	s	0	-3.999
	±	C4Ac0.5H105	1	s	0	-2.432
	± s	C4Ac0.5H12	1	s	0	-0.7002
	+ S	C4Ac0.5H9	1	s	0	-5.431
	+ s	C4AcH11	1	s	0.01850509	-5.727e-11
	± s	C6AsH13	1	s	0	-37.06
	÷ s	C6AsH9	1	s	0	-46.07
	± s	Aragonite	1	s	0	-0.1438
	± s	Calcite	1	s	7.8441112e-005	2.379e-07
	÷ s	lime	1	s	0	-9.776
	÷ s	Portlandite	1	s	0.043655451	-1.228e-07
	+ s	Anhvdrite	1	s	0	-6.021
	4					

💡 Empa

Materials Science and Technology

System: T = 298.15 K; P = 1.00 bar; V = 0.1305 L; Aqueous: built-in EDH(H); pH = 12.477; pe = 8.2

Empa Materials Science and Technology

Detailed results

Eq	IC	EqPh	EqDC	EqSurf	Eq	Gen	26/03/2020, 15:4	3		
СЗА	+ (CaSO4								
	PH	nam	L1	Ха		Fa		phVol	phM	
0	a	aq_gen	29	2.5	29822	6.40	81814e-009	45.643622	45.598405	j l
1	g	gas_gen	6	0.00316	99457	-5.53	38199e-009	78.58204	0.099997749)
2	s	ettringite	2		0		-9.1324096	0	0	
3	s	SO4_OH_AFm	2		0		-1	0	0	Ц
4	s	OH_SO4_AFm	2		0		-1	m _{co2 AEm}	= 10.52 g	
5	s	Al(OH)3am	1		0		-3.934274	CO3-AFI		
								•		
26	s	C4Ac0.5H12	1		0	-(.70020345	0	0	
27	s	C4Ac0.5H9	1		0	-	-5.4311886	0	0	
28	s	C4AcH11	1	0.018	50509	-5.727	73337e-011	4.8475565	10.519196	
29	s	C6AsH13	1		0		_	0	0	
30	s	C6AsH9	1		0	mc	_{alcite} = 0 .	008 g 🛛 🕦	0	
31	s	Aragonite	1		0	-(0.14383192	0	0	
32	s	Calcite	1	7.8441112	e-005	2.379	94536e-007	0.002897144	0.0078509356	
33	s	lime	1		0	-	-9.7760354	0	0	
34	s	Portlandite	1	0.0436	55451	-1.228	31381e-007	1.4432492	3.2345502	
35	s	Anhydrite	1		0	-	-6.0210873	0	0	
36	s	Gypsum	1		0	-	-5.7980614	هر	0	
37	s	hemihydrate	1		0	-	-6.7872852		0	
38	s	Sulphur	1		0	-	m	- 3 22 4	0	
			1				Portlan	dite - 5.25 g		<u> </u>

Formation of monocarboaluminate, small amounts of calcite and portlandite

Experimental problem part 3:

Reaction of C₃A with calcium carbonate

$5 g C_3 A + 1.86 g CaCO_3 + 50 g H_2 O$

+ 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation)

molar ratio $SO_3/AI_2O_3 = 0$, molar ratio $CO_2/AI_2O_3 = 1$

Empa Materials Science and Technology

Experimental conditions: React 5 g C_3A and 1.86 g $CaCO_3$ with 50 g water (add 0.1 g O_2 to simulate gas phase)

Repeat calculation without lime addition

Empa Materials Science and Technology

Experimental conditions: React 5 g C_3A and 1.86 g $CaCO_3$ with 50 g water (add 0.1 g O_2 to simulate gas phase)

Without lime addition: check pore solution composition

Ec :3A	IC + C	aso	EqPh EqDC	EqSurf	EqGen 26/03/2020, 1	.15:43			-
							molality		measured *
	ICr	nam	b	Cb	u	lgm t	mt	ICnam	
	Al		0.037010516	-7.6640767e-018	-320.75864	-3.2343274	0.00058300544	Al	2.32 mmol/l
	С		0.018583832	7.1850719e-019	-185.34933	-5.1157638	7.6601304e-006	с	< 0.1 mmol/l
	Ca		0.074099606	4.5505455e-018	-270.10305	-2.3630329	0.0043347808	Ca	3.19 mmol/l
	Н		5.5508373	-6.1312614e-016	-47.830556	-2.0930571	0.0080712899	Н	-
	0		2.9484519	6.4210593e-016	-0.016487608	-1.9279604	0.011804282	0	
	s		1e-009	0	-277.49644	-7.6659371	2.1580567e-008	s	
	Zz		0	3.6244083e-020	20.566841	0	-7.4164313e-019	Zz	
۲	m	ea	sured at 2	5°C, aged	56 d, unde	ersaturation	pHcalc = 11. า	.84	pH = 11.59
S C	ioli C	id 3 - /	<i>phase ass</i> AFm - calc	<i>emblage:</i> ite - aqueo	us phase	experii	ments		modellir

V

Solubility of Al-hydroxides

= supress formation of gibbsite and microcrystalline Al(OH)₃ and repeat calculation

💡 Empa

=>Introduction of metastability constraints, Option 1: deactivate compound

Input: System Definition	Results: Equilibrium State													
Phase/species	L	T	On/	UC	Add	to	BC	UG	G0	corr.	UK	Lower_KC	Upper_KC	KC typ
🖶 aq gen	29	a	+	g	0			J	0					
🖶 gas gen	6	g	+	g	0			J	0	P	had	oc dicar	npar	
+ ettringite	2	s	+	g	0			J	0		TUS	ies alsap	peur	
🕀 SO4 OH AFm	2	s	+	g	0			J	0	fr	om	results		
• OH_SO4_AFm	2	s	+	g	0			J	0	Γ	0111	results		
⊕ SO4_CO3_AFt	2	s	+	g	0			J	0					
CO3_SO4_AFt	2	s	+	g	0			J	0					
Al (OH) 3am	1	s	+	g	0			J	0					
AlOHam		0	+	М	0			J	0		М	0	1000000	В
AL (OH) 3mlc	1	S	-	g	0			J	0					
AlOHmic		0	-	М	0			J	0		М	0	0	В
Gibbsite	1	s	-	g	0			J	0					
Gbs		0	-	М	0			J	0		М	0	0	В
Craphita	1	~	1	~	0			т	0					

Option 2: limit the amount formed to zero => phases still present in results, in 0 amount

Phase/species	L	I	[On/	UC	Add	to	BC	UG	G0	corr.	UK	Lower_KC	Upper_KC	KC ty
🖶 aq_gen	29	a	+	g	0			J	0				•	
🖶 gas_gen	6	g	r +	g	0			J	0		1			
ettringite	2	s	; +	g	0			J	0	L L	Jbb	per resti	riction	
• SO4_OH_AFm	2	s	; +	g	0			J	0		 	0		
• OH_SO4_AFm	2	s	; +	g	0			J	0	(aui_	$_{-} = 0$		
■ SO4_CO3_AFt	2	s	; +	g	0			J	0				20000	
CO3_SO4_AFt	2	s	; +	g	0			J	0	L	Jet	<i>αυιτ ΤΟ</i> Ο	10000	
Al (OH) 3am	1	s	+	g	0			J	0		-			
AlOHam		0) +	М	0			J	0		М	0	1000000	В
Al (OH) 3mic	1	s	+	g	0			J	0			Г		
AlOHmic		0) +	М	0			J	0		М	0	0	В
Gibbsite	1	s	; +	g	0			J	0					
Gbs		0) +	M	0			J	0		М	0	0	в 1
Granhita	1	q	+	a	0			л.	0			L		

Hydration of C₂A + CaCO₂

Experimental conditions: React 5 g C_3A and 1.86 g $CaCO_3$ with 50 g water (add 0.1 g O_2 to simulate gas phase)

Empa Materials Science and Technology

supressed formation of gibbsite and microcrystalline Al(OH)₃ and repeat calculation

Formation of monocarboaluminate and small amounts of calcite, as observed <u>in the experiment</u>

gibbsite and microcrystalline Al(OH)₃ are oversaturated (log Sl > 0) But none is allowed to form (amount = 0)

Phase/	species	L	T	Amount (mol)	logSI/Activity
a	aq gen	29	a	2.5727565	1.056e-08
g	gas gen	6	g	0.0031689703	8.058e-08
±	ettringite	2	s	0	-9.857
±	SO4 OH AFm	2	s	0	-1
± S	OH SO4 AFm	2	s	0	-1
± S	Al (OH) 3am	1	s	0	-0.5254
÷	Al(OH)3mic	1	S	0	0.3845
÷	Gibbsite	1	s	0	0.8377
÷	Graphite	1	5	0	79.94
± S	Mayenite	1	s	0	-120.6
± S	Aluminate	1	s	0	-38.01
± S	CA	1	s	0	-8.019
± S	CA2	1	s	0	-6.872
±	C2AH75	1	s	0	-1.717
± S	СЗАНб	1	s	0	-2.491
± S	C4AH11	1	s	0	-6.949
± S	C4AH13	1	s	0	-5.215
± S	C4AH19	1	s	0	-5.012
±	CAH10	1	s	0	-0.4431
± S	C4AsH105	1	s	0	-5.725
± S	C4AsH12	1	s	0	-4.379
± S	C4AsH14	1	s	0	-4.352
÷ S	C4AsH16	1	s	0	-4.437
± S	C4AsH9	1	s	0	-7.744
± S	C4AcH9	1	s	0	-4
± S	C4Ac0.5H105	1	s	0	-3.569
± S	C4Ac0.5H12	1	s	0	-1.837
± S	C4Ac0.5H9	1	s	0	-6.569
± S	C4AcH11	1	s	0.018452688	-8.039e-08
± S	C6AsH13	1	s	0	-37.79
±	C6AsH9	1	s	0	-46.8
	Aragonite	1	s	0	-0.1438 1 /
±	Calcite	1	s	0.00013077376	1.642e-05
± S	lime	1	s	0	-12.05

Experimental conditions: React 5 g C₃A and 1.86 g CaCO₃ with 50 g water (add 0.1 g O₂ to simulate gas phase)

<u>Without lime addition</u>: supress formation of gibbsite and microcrystalline $Al(OH)_3$ and repeat calculation

Experimental problem part 4:

Reaction of C₃A with calcium carbonate and calcium sulfate

5 g C_3A + + **1.86** g $CaCO_3$ + **2.52** g $CaSO_4$ + **2.5** g CaO+ **50** g H_2O + 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation)

molar ratio $SO_3/AI_2O_3 = 1$, molar ratio $CO_2/AI_2O_3 = 1$

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃, 2.52 g CaSO₄ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

We can use the previous system as template 💹 GEM-Selektor 3 (GEMS3) - Ge because sulfate was already included Modules Record Data Calculate View Create(New)... New(Clone).. 4 Results: Equilib Input: System Definition 🔍 Display F6 6 SysEq: Please, enter a new record key: ? \times Phase/species SysEq 🖌 Remake... aq gen Ċ Ca use menue or c lickgicon gen C3A:G:C3A-Cs-Cc:0:0:1:25:0: ettringite 🚽 Save Process SO4 OH AFm ÷..... 3 Save As... C3A Name of the modeling project ÷..... 5 OH SO4 AFm X SO4 CO3 AFt ✗ Delete 3 Thermodynamic potential to minimize give a new name CO3 SO4 AFt lG GtDemo Al (OH) 3am /√ Plot data Graphite C3A-Cs-Cc Name of the chemical system definition (CSD) 📥 Print... Mayenite Aluminate 3 CSD (recipe) variant number <integer> 0 GEM2MT CA 3 +F CA2 0 Volume of the system, dm3 (0 if no volume constraint) C2AH75 C3AH6 UnSpace 1 Pressure, bar, or 0 for Psat(H2O)g C4AH11 ÷. 25 Temperature, C (>= 0) System: T = 298.15 K; P = 1.00 bar; V Project 0 Variant number for additional constraints We use the recipe wizard again Ok Reset From List Help Cancel

1) Create new system

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃, 2.52 g CaSO₄ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃, 2.52 g CaSO₄ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

roperty	Selection	Re	cipe Input				
Compos (xa_)		<u> </u>	Property	Name	Quantity	Units	
Comp (xd_) Comp (bi_)	AI2O3	1	xa_	Aqua	50	g	
hase (xp_)	Aqua	2	xa_	C3A	5	g	
in.upper (dil_)	C3A	3	ха	CaCO3	1.86	a	
0 shift (gEx_)	C4A3s			02	0.1		
ther inputs	CA CA2	-	×a_	6-0	0.1	9	
	CH4		xa_	CaO	2.5	g	
	Ca(OH)2	6	xa_	CaSO4	2.52	g	
	CaCO3 CaO CaSO4 CaSO4_05H2O Gypsum H2	_ _	Con Alte (dep	npos: bulk rnatively p pendent co	composition phases can be pmpositions)	s without th e assessed v xd_	ermodynamic ia Dcomp
Input quantities vector	of Compos(itions) contributing	to B_	son is di	ifferent.	like calcite af	opear also ti	nere, nomenció

Hydration of $C_3A + CaO + CaSO_4 + CaCO_3$

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃, 2.52 g CaSO₄ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

Input: Sys	tem Definition Results: Equilibrium	State				
Phase,	/species	L	T	Amount (mol)	logSI/Activity	Concentration
∎… a	aq_gen	29	a	2.3867606	3.823e-10	
	gas gen	6	g	0.0031733326	1.096e-07	
±S	ettringite	2	s	0	-0.04235	
± s	SO4 OH AFm	2	s	0	-1	
+ S	OH SO4 AFm	2	S	0	-1	
- S	SO4 CO3 AFt	2	s	0.02041597	4.874e-08	
			J	0.0019071421	0.226472	0.093414229
	ettringite03 ss		М	0.018508828	0.900165	0.90658577
	CO3 SO4 AFt	2	s	1.8168586e-007	4.903e-08	
	tricarboalu03		М	1.6976312e-008	0.226472	0.093437717
	ettringite03 ss		J	1.6470955e-007	0.900165	0.90656228
+ S	Al(OH)3am	1	s	0	-3.934	
÷	Al(OH)3mic	1	s	0	-3.024	
± S	Gibbsite	1	s	0	-2.571	
± 5	Graphite	1	s	0	-82.21	
± S	Mayenite	1	s	0	-141	
± S	Aluminate	1	s	0	-38	
± s	CA	1	s	0	-12.56	
± s	CA2	1	s	0	-18.23	
± s	C2AH75	1	s	0	-3.989	
± s	СЗАНб	1	s	0	-2.489	
± S	C4AH11	1	s	0	-4.676	
± s	C4AH13	1	s	0	-2.942	
±S	C4AH19	1	s	0	-2.741	
±S	CAH10	1	s	0	-4.99	
+ S	C4AsH105	1	s	0	-2.45	
± S	C4AsH12	1	s	0	-1.105	
±	C4AsH14	1	s	0	-1.079	
±	C4AsH16	1	s	0	-1.165	
+ S	C4AsH9	1	s	0	-4.47	
+ S	C4AcH9	1	s	0	-3.999	
± S	C4Ac0.5H105	1	s	0	-2.432	
±S	C4Ac0.5H12	1	s	0	-0.7002	
±S	C4Ac0.5H9	1	s	0	-5.431	
±S	C4AcH11	1	s	0.011699715	-1.729e-08	20
+ S	C6AsH13	1	s	0	-27.97	-
	CENCHO	1	~	0	26.00	

2) Calculate equilibrium (you may activate again SO4_CO3_AFt, CO3 SO4 AFt , gibbsite and

microcrystalline Al(OH)₃)

Formation of AFt, monocarboaluminate, calcite and portlandite

No formation of monosulfoaluminate despite $SO_3/Al_2O_3 = 1$

solid solution:

90.7 mol% SO₄-AFt

9.3 mol% CO₃-AFt

Experimental conditions: React 5 g C₃A, 1.86 g CaCO₃, 2.52 g CaSO₄ and 2.5 g CaO with 50 g water (add 0.1 g O₂ to simulate gas phase)

Experimental conditions: React 5 g C_3A , 1.86 g $CaCO_3$, 2.52 g $CaSO_4$ and 2.5 g CaO with 50 g water (add 0.1 g O_2 to simulate gas phase)

3) Assess Cal	cul	ation		Ec	IC EqPh	EqDC EqSurf	f EqGen 27/	/03/2020, 08:36	
Aqueous phase co (speciation, acivit	omp ties d	osition and	_	C3A 	+ CaSO4	total co [mol]	nc. lg (activity)	activity coeff.	molality [<i>mol/kg</i>]
activity coefficien	ts)				DCnam	x	lga	gamma	my _
<i>y</i> 11				0	Al(SO4)+	1.5068327e-035	-33.540047	0.82202255	3.508076e-034
Anieniis nhase co	mn	ncition		1	Al(SO4)2-	0	-36.735817	0.82202255	0
Aqueous priuse co	mp	JSILION		2	Al+3	1.6083685e-033	-32.244404	0.15212732	3.7444628e-032
total molalities)				3	AlO+	6.8023658e-020	-17.885448	0.82202255	1.5836673e-018
1				4	A102-	3.1659312e-007	-5.2176143	0.82202255	7.3706439e-006
				5	Alo2H@	2.4294309e-013	-11.247485	0.99999945	5.6559884e-012
EaIC EaPh EaDO	c	EgSurf	EgGen	6	AlOH+2	1.8521152e-026	-24.725228	0.43664655	4.3119326e-025
				7	Ca (CO3) @	2.383873e-007	-5.2557427	0.99999945	5.5499245e-006
m t	TCna	am		8	Ca(HCO3)+	1.5710576e-011	-9.521961	0.82202255	3.6575989e-010
	TCIR	am		9	Ca(SO4)@	3.8412382e-007	-5.0485142	0.99999945	8.9428346e-006
7.3706496e-006	Al			10	Ca+2	0.00069186196	-2.1528477	0.43664655	0.016107325
6.6329802e-006	С			11	CaOH+	0.00018264054	-2.4564943	0.82202255	0.0042520773
	-			12	CO2@	1.0814254e-016	-14.599048	0.99999945	2.5176801e-015
0.020373895	Ca			13	CO3-2	4.6329894e-008	-6.3271175	0.43664655	1.078612e-006
0.040680088	н			14	нсоз-	1.7515891e-010	-8.4747461	0.82202255	4.0778964e-009
	**			15	CH4@	0	-159.28362	0.99999945	0
0.043352788	0			16	Н20	0	-44.651413	0.99999945	0
2 35372788-005	q			17	02@	5.4634714e-005	-2.8955074	0.99999945	0.0012719576
2.33372708-003	3			18	\$203-2	0	-163.51147	0.43664655	0
8.4386471e-019	Zz			19	HSO3-	0	-55.394564	0.82202255	<u> </u>
1				20	so3-2	0	-50.137988	0.43664655	6
				21	HSO4-	1.0803266e-017	-15.684597	0.82202255	2.5151219e-016

Hydration of C₃A – Summary of modelled results

1.) $C_3A + CaSO_4 + CaO + H_2O \implies monosulfoaluminate(ss) + AFt_{traces} + CH$

2.) $C_3A + CaCO_3 + CaO + H_2O \implies monocarboaluminate + calcite_{traces} + CH$

4.) $C_3A + CaCO_3 + CaSO_4 + CaO + H_2O \implies monocarboaluminate + AFt(ss) + calcite + CH$

💡 Empa

Aaterials Science and Technology

