

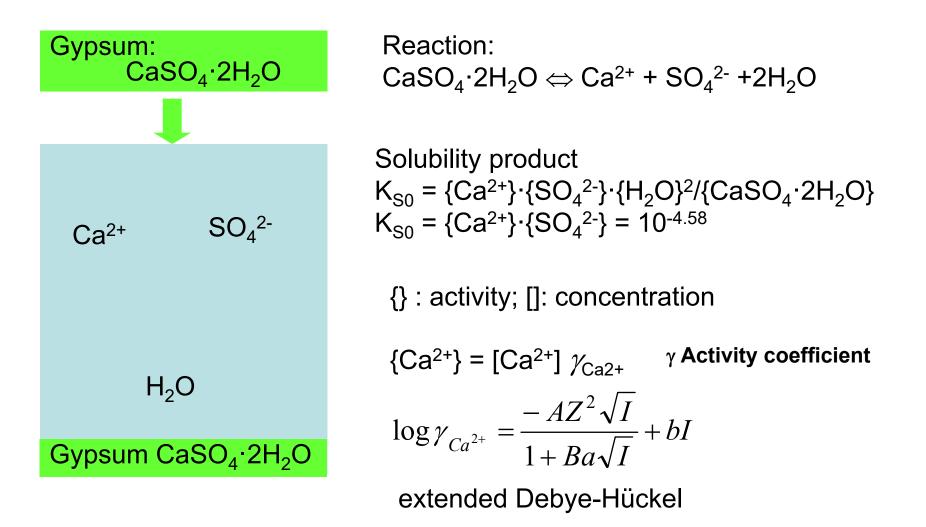
Lecture 02a What is GEMS

first tutorials

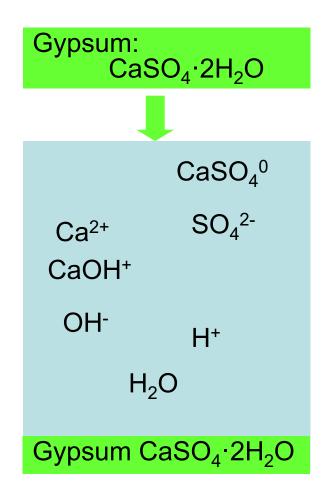
Barbara Lothenbach Frank Winnefeld Bin Ma Zhenguo Shi

Software development/fitting tools/kinetic:

Dmitrii Kulik


Dan Miron

- 1. Short overview thermodynamic modelling
 - a. chemical equilibrium
 - b. modelling software
 - c. databases
- 2. What is GEMS?
- 3. Installation of GEMS
- 4. First tutorials
 - Calculation of single systems:
 - Equilibrium C_3A , gypsum, portlandite
 - Parameter variations (process)
 - calcite, temperature, ...



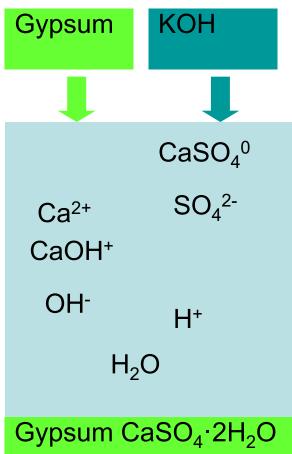
Example chemical equilibria: Gypsum in a glass of water

Example chemical equilibria: Gypsum in a glass of water

Reaction: CaSO₄·2H₂O \Leftrightarrow Ca²⁺ + SO₄²⁻ +2H₂O

Solubility product

 $K_{S0} = \{Ca^{2+}\} \cdot \{SO_4^{2-}\} = 10^{-4.58}$

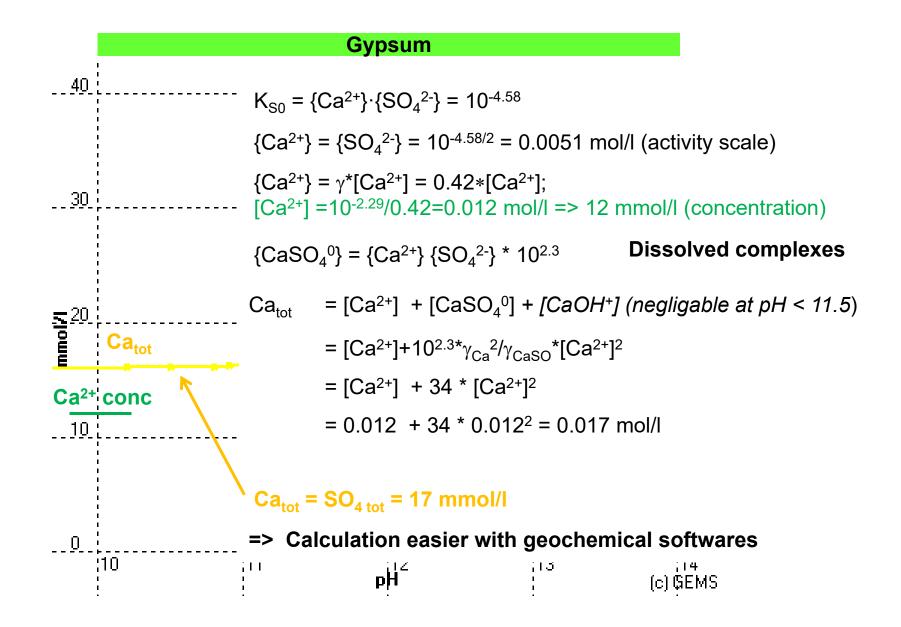

Complex formation: Equilibrium constants $K = \{CaOH^+\}/\{Ca^{2+}\}\cdot \{OH^-\} = 10^{1.22}$ $K = \{CaSO_4^0\}/\{Ca^{2+}\}\cdot \{SO_4^{2-}\} = 10^{2.3}$ $K = \{H^+\}\cdot \{OH^-\} = 10^{-14.00}$

?

2 Thermodynamic modelling

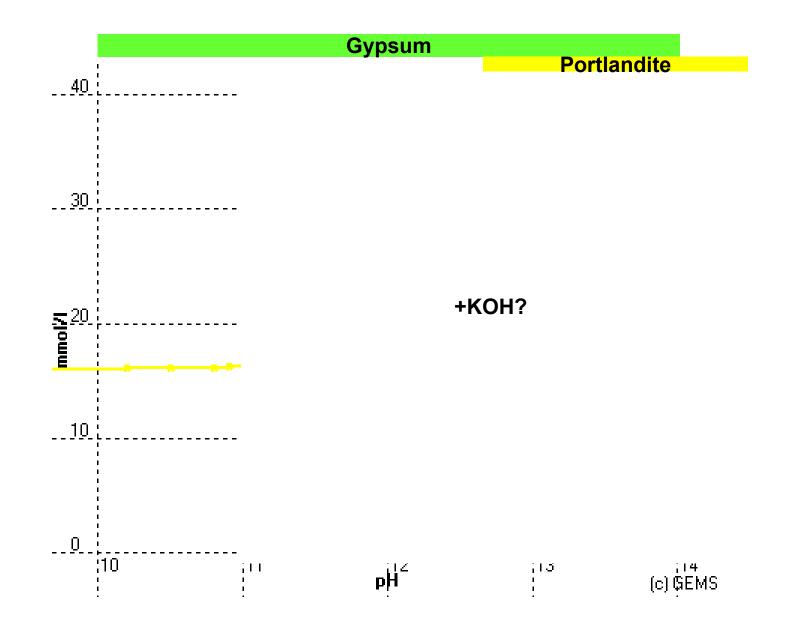
Chemical equilibria:

1 Concentration of Ca, SO₄?

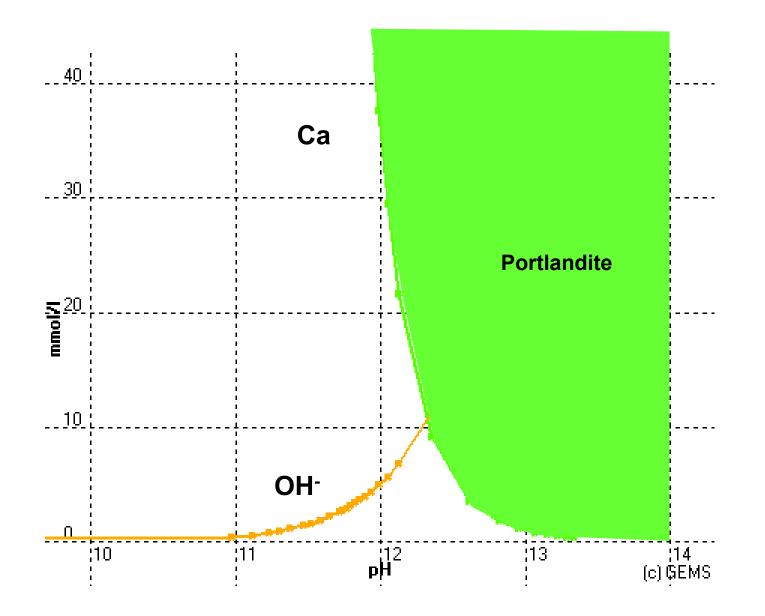

2 What happens if we add KOH?

Solubility products $K_{S0} = \{Ca^{2+}\} \cdot \{SO_4^{2-}\} = 10^{-4.58}$ $K_{S0} = \{Ca^{2+}\} \cdot \{OH^-\}^2 = 10^{-5.20}$

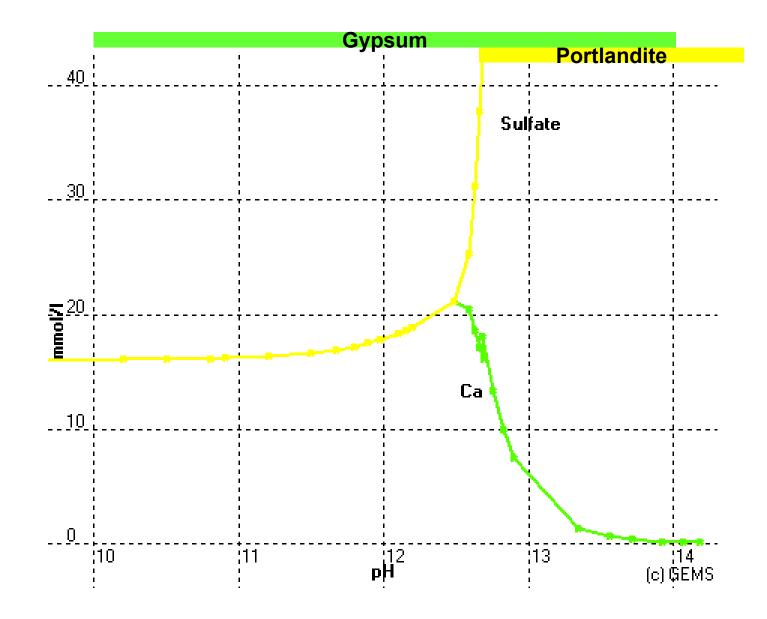
Equilibrium constants $K = \{CaOH^{+}\}/\{Ca^{2+}\}\cdot\{OH^{-}\} = 10^{1.22}$ $K = \{CaSO_{4}^{0}\}/\{Ca^{2+}\}\cdot\{SO_{4}^{2-}\} = 10^{2.3}$ $K = \{H^{+}\}\cdot\{OH^{-}\} = 10^{-14.00}$



Solubility of gypsum



Solubility of gypsum



Solubility of portlandite

Solubility of gypsum

Codes

Complex systems

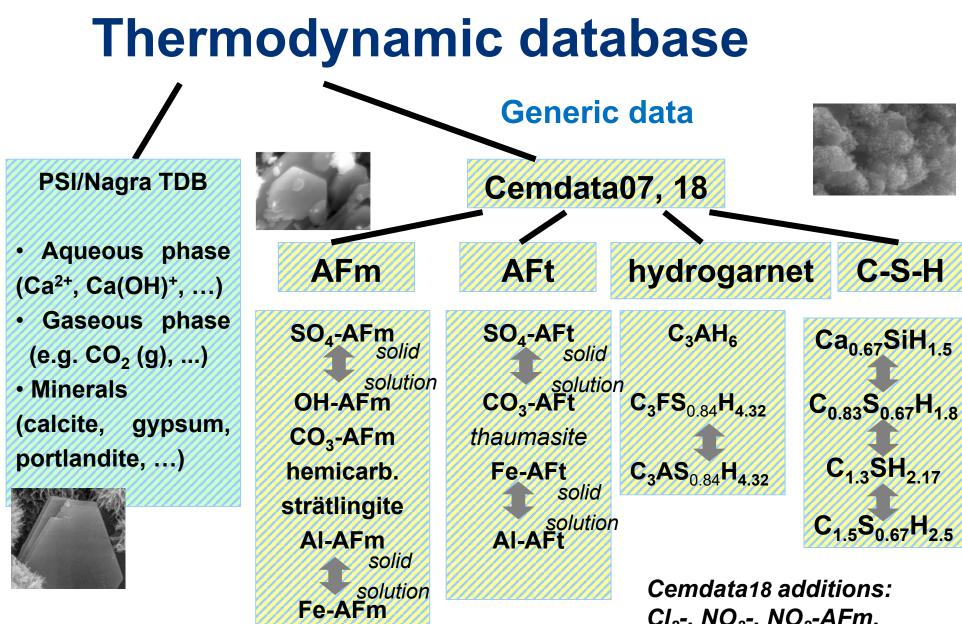
Geochemical codes needed for calculation:

- Geochemical database
- User interface: problem formulation
- Problem solving

in database!

Geochemical Codes

Freeware


- **GEMS 3.7** http://gems.web.psi.ch/ solid solutions, kinetics, fitting, transport modelling Comparable results differences in databa (Used in this course)
- PHREEQC http://www.hydrochemistry.eu/ transport modelling
- MINTEQA2 https://www.epa.gov/ ceam/mintega2-equilibrium-speciation-model

Commercial products

MINEQL+

http://www.mineql.com/

CHESS

Data based on solubility measurements at different temperatures + solid phase characterisation

Cemdata18 additions: Cl₂-, NO₃-, NO₂-AFm, relative humidity, M-S-H, zeolites, C-N-A-S-H, ...

- 1. Geochemical programme √
- 2. Thermodynamic data \checkmark
- 3. Problem formulation:

Define quantities of

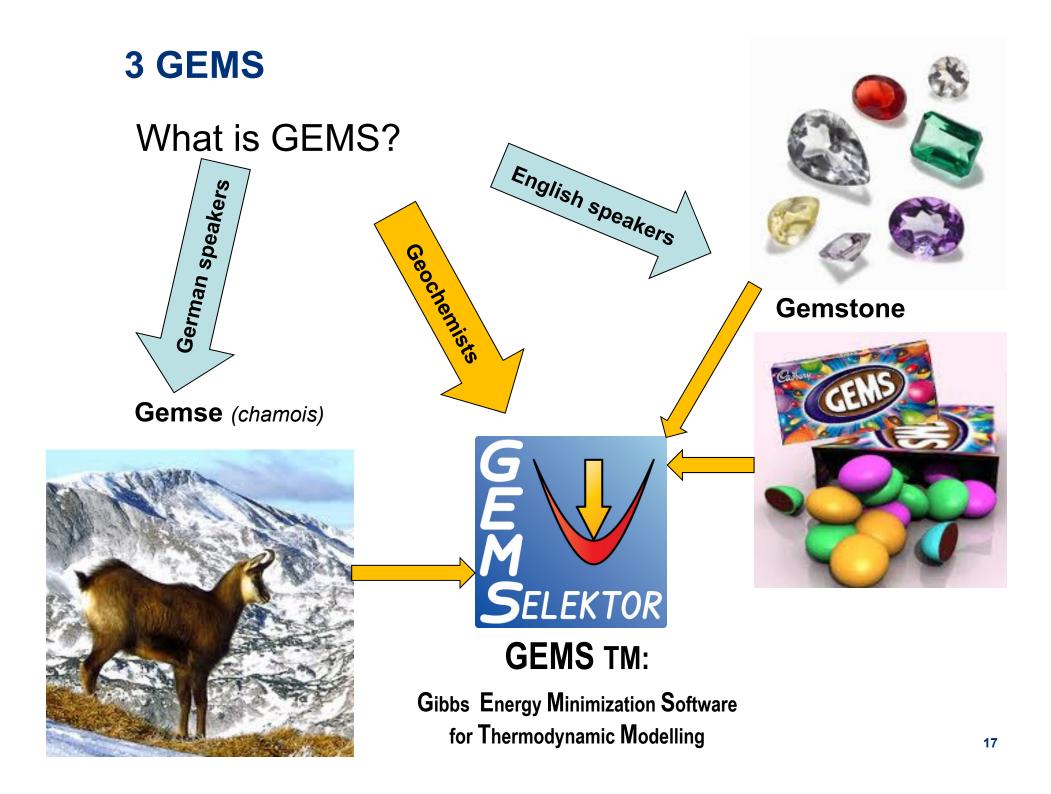
- water,
- solids: gypsum, calcite, C₃A, C₃S,...
- liquids: H₂SO₄, ...
- gas: CO₂, N₂, ...

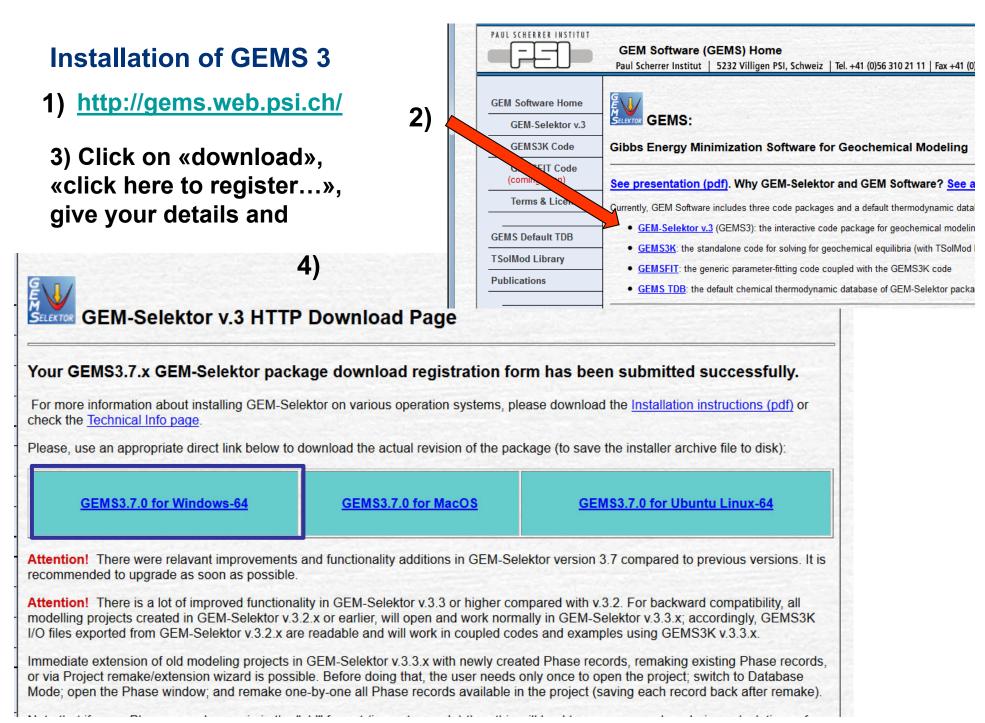
... at the user interface of the respective programme

Input

Property	Selection	Recipe Input			
Compos (xa_)	Aqua	Property	Name	Quantity	Units
DComp (xd_) IComp (bi_)	CH4	ı xa_	Aqua	1000	g
Phase (xp_)	CO2	2 xa_	CO2	1	g
Kin.lower (dll_)	Ca(OH)2 CaCO3	3 xa_	Ca(OH)2	10	g
Vin unner (dul.)	TCacos		-		
Kin.upper (dul_) G0 shift (gEx)	CaO	xa_	Gypsum	8	q
Kin.upper (dul_) G0 shift (gEx_) Other Inputs			02	8 .1 Ire oxidising	g

Results 1


Solids: amount in g, mol, cm³,...


		w He		5 🗐 🎸 🗸	/ 🖽 🛛 t// 🖵 🍯	portlandit:G:CO2:	0.0.1.25.0.
						portiandit.G.CO2.	0.0.1.25.0.
ndit:*:*:*:*:*:*:				1			
5 6 7 8	Eq	IC	EqPh Eq	DC EqSurf	EqGen 29/08/20	12, 12:44	
0 1 25 0	_						
				[-		
		PHna		Xa	Fa	phVol	phM
	0	a	aq_gen	55.631449	4.049238e-010	1003.4458	1004.0869
	1	g	gas_gen	0.0018093475	-3 6160014e-011	44.853204	0.057896951
	2	s	Graphite	0	-82.225695	U	0
	3	8	Aragonite	0	-0.14383216	0	
		5	Calcite	0.022715807	9.9544516e-010	0.8389856	2.273557
	5	s	lime	0	-9.7759048	0	0
	6	3	Portlandite	0.092888665	4.112154e-008	3.0708992	6.8823719
(3	Anhydrite	0	-0.22276489	0	0
(7		-	0.033682935	2.9568298e-008	2.5157783	5.7992987
(7		Gypsum	0.00002900			
	7 8 9	2	Gypsum nebydrate	0.033682935	-0.98902801	0	0

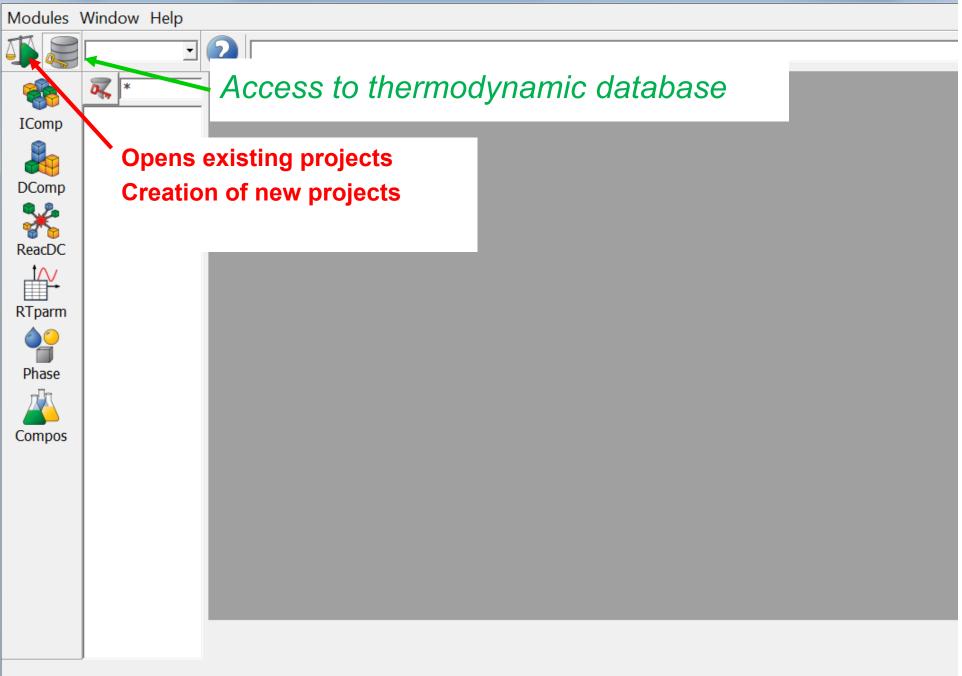
Results 2

Aqueous concentrations (mg/l, mM, ...)

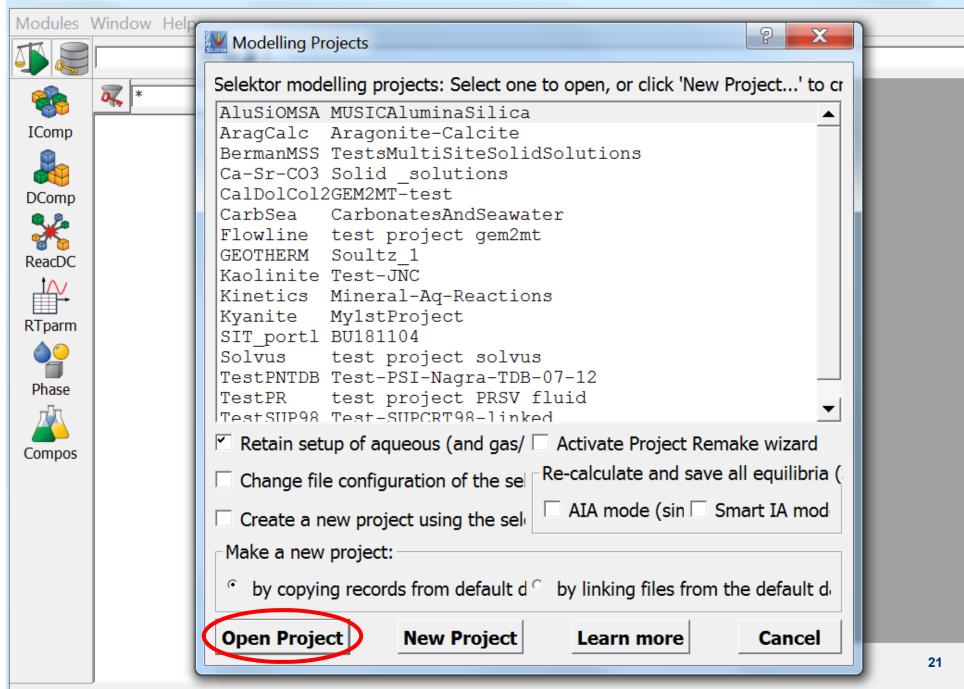
m Mode	elling b	y G	ibbs Energy Minimization	n - [EqDemo :: portlandit	t:G:CO2:0:0:1:25:0:]	S			x	
Wind	ow H	elp						_ 6	5)>	
1	•		• 🛋 🛪 📭	s 🗸 V 🗐 了	1 🗠 🚔 💽	portlandit:G:CO2:0:0:1:2	25:0:			
EqIC EqDC EqSurf EqGen 29/08/2012, 12:44										
	ICn	am	b	Съ	u	lgm t	mt	ICham		
0	С		0.022722315	0	-189.33166	-5.1869589	6.5019116e-006	с		
1	Ca		0.1814309	1.8633089e-017	-266.1702	-1.4932845	0.032115559	Ca		
2	H		111.47254	1.3788486e-014	-47.83934	-1.4125525	0.038676534	Н		
3	0		56.108789	-5.2917973e-015	-4.1667698e-011	-1.0342882	0.092408466	0		
4	S		0.046464839	0	-267.67769	-1.8937821	0.012770795	S		
5	Zz		0	6.0791121e-019	19.220318	0	2.6947074e-018	Z7		

Installation Windows

ST GEMS 3.7.0 (Windows) c.b053eed.fdcdd2b


Use default, or type/select another location. If the folder does not exist, it will be created.

C:\GEMS370			
	ОК	Cancel	


- Install the programme in C:\GEMS370
 The creation of a new folder avoids, for those who had GEMS previously installed, problems with older versions of the thermodynamic databases (tdb).
- ! Do **NOT** install it in the programme folder ! *Problems with administrator rights in windows*

 \times

GEM-Selektor 3 (GEMS3) - Geochemical Equilibrium Modelling by Gibbs Energy Minimization

GEM-Selektor 3 (GEMS3) - Geochemical Equilibrium Modelling by Gibbs Energy Minimization

Installation of cement database

1. Close GEMS

2. Get cemdata18 at https://www.empa.ch/web/s308/thermodynamic-data

In the system of the

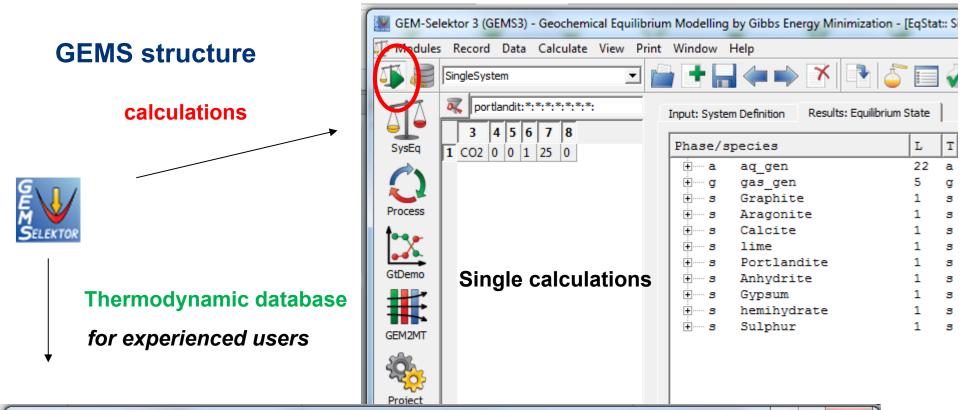
Empa > 700 - Functional Materials > 308 - Concrete / Construction Chemistry > Research > Cement Hydration > CEMDATA > Thermodynamic data

ЕМРА	Thermodynamic data
700 - FUNCTIONAL MATERIALS	
308 - CONCRETE / CONSTRUCTION CHEMISTRY	Cemdata
> OVERVIEW	Thermodynamic data for hydrated solids in Portland cement system (CaO-Al ₂ O ₃ -SiO ₂ -CaSO ₄ -
✓ RESEARCH	CaCO ₃ -Fe ₂ O ₃ -MgO-H ₂ O)
✓ CEMENT HYDRATION	- New version CEMDATA 18.1 available -
Hydration	
Thermodynamic modeling	The first version of the cement specific cement database Cemdata was published in 2007-2009. Since then it was updated several times; the last update has been published in 2019 (Lothenbach et
Interaction with environment	al. 2019)
✓ CEMDATA	Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali- activated materials
Thermodynamic data	
Tutorials	Cemdata18 database has been developed specifically for hydrated Portland, calcium aluminate,
References	calcium sulfoaluminate and blended cements, as well as for alkali-activated materials. It is available in GEMS and PHREEQC computer program formats, and includes thermodynamic properties
Ternary diagram	determined from various experimental data published in recent years. Cemdata18 contains thermodynamic data for common cement hydrates such as C-S-H, AFm and AFt phases,
> EARLY AGE CONCRETE	hydrogarnet, hydrotalcite, zeolites, and M-S-H that are valid over temperatures ranging from 0 to at least 100°C. Solid solution models for AEM. AET. C.S.H. and M.S.H. are also included in the
Inzip cemdata18	database

Prof. Dr. Barbara Lothenbach Senior Researcher / Projektleiterin / Adjunct Prof. NTNU

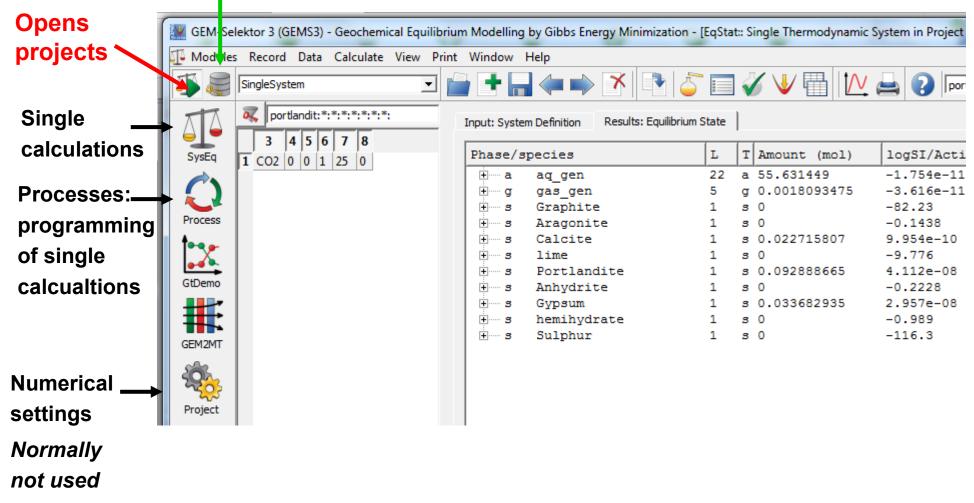
Phone: +41 58 765 4788 barbara.lothenbach@empa.ch

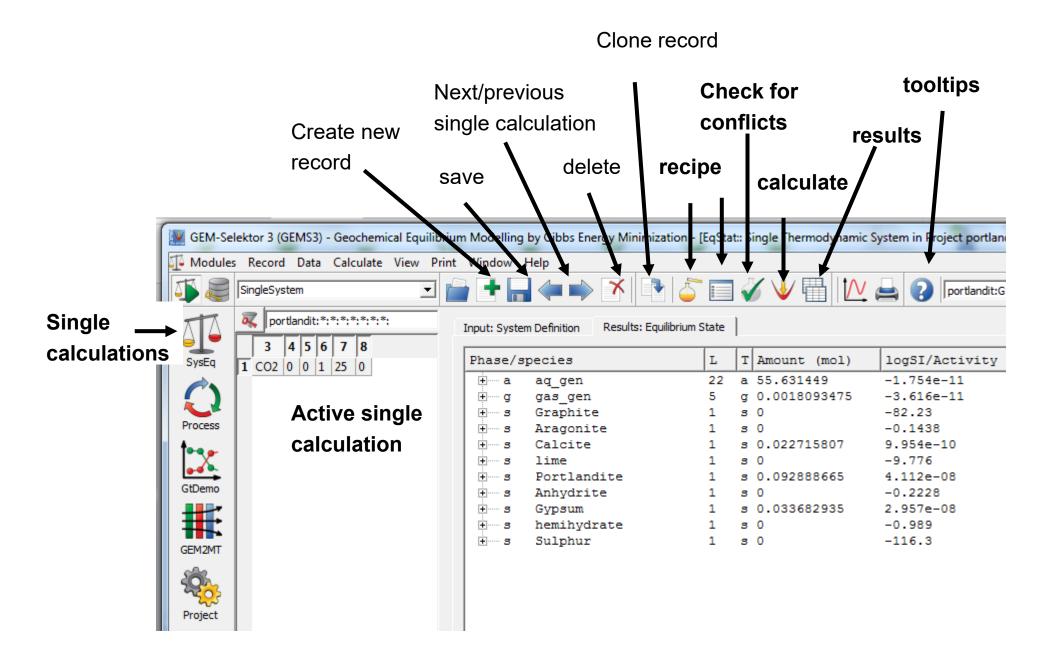
Downloads and Links


- GEMS PSI
 Cemdata18.1 for GEMS
- Cemdata18.1 for PHREEQC
- CEMDATA 14.01
- CEMDATA 14.01 overview
- -----

3. unzip cemdata18 database

Installation of cement database


- 1. Close GEMS
- 2. Get cemdata18 and unzip folder
- 3. Copy all files (*without folder!*) from the folder Cemdata18 into the directory C:\GEMS345/GEMS3-app/Resources/DB.default
- 4. Open GEMS and cemdatabase will be available for «new projects»


✓ 📕 GEMS360	^	Name	Änderungsdatum	Тур
🗸 📙 Gems3-app		compos.3rdparty.cemdata.aam.ver18.01	17.09.2017 08:05	NDX-Datei
📜 iconengines		compos.3rdparty.cemdata.aam.ver18.01	17.09.2017 08:05	PDB-Datei
📜 imageformats		compos.3rdparty.cemdata.pc.ver18.01.ndx	17.09.2017 08:05	NDX-Datei
📜 platforms		compos.3rdparty.cemdata.pc.ver18.01.pdb	17.09.2017 08:05	PDB-Datei
printsupport		compos.3rdparty.claysor.ver18-12.v0.1.ndx	02.05.2018 14:56	NDX-Datei
✓		compos.3rdparty.claysor.ver18-12.v0.1.pdb	29.08.2019 15:49	PDB-Datei
> 📙 data		compos.psi-nagra.pco.generic.ver12-07.n	05.02.2018 14:16	NDX-Datei
DB.default		compos.psi-nagra.pco.generic.ver12-07.p	05.02.2018 14:16	PDB-Datei
> doc	н.	compos.supcrt.pco.inorg.ver1998.ndx	05.02.2018 14:16	NDX-Datei
		compos.supcrt.pco.inorg.ver1998.pdb	05.02.2018 14:16	PDB-Datei
> 📙 help		dcomp.3rdparty.cemdata.ver18.01.ndx	24.04.2019 10:36	NDX-Datei
📕 img		dcomp.3rdparty.cemdata.ver18.01.pdb	24.04.2019 10:36	PDB-Datei
> 📙 projects		dcomp.3rdparty.claysor.ver18-12.v0.1.ndx	02.05.2018 14:56	NDX-Datei
📜 visor.data		dcomp.3rdparty.claysor.ver18-12.v0.1.pdb	29.08.2019 15:49	PDB-Datei
sqldrivers		dcomp.psi-nagra.rec.aqueous.ver12-07.v	05.02.2018 14:16	NDX-Datei
 • • • 		dcompinsi-nagra reclaqueous ver12-07 v	05 02 2018 14.16	PDR-Dat23

💓 GEM-Sel	👷 GEM-Selektor 3 (GEMS3) - Geochemical Equilibrium Modelling by Gibbs Energy Minimization - [DComp :: Thermochemical/EOS data fo 💶 💷 💌											
	Noture: Record Record List Database Files Window Help											
1	Image: Comp Image: Comp											
		1	2	3	4	Page 1 Page 2 29/08/2012, 12:38						
IComp	1	g	S-2	H2S	en_	Prove Long Million						
	2	s	C0	Gr	dn_	Portlandite	-					
	3	s	CaCO	Arg	dn_	Ca (OH) 2	-					
DComp	4	s	CaCO	Cal	dn_		.					
	5	s	CaO	Lim	ce_	M0 74.0927 Zz 0 ab	-					
S 🕹	6	s	CaOH	Portlandite	dn_							
80	7	s	CaSO	Anh	dn_	V0d 3.306 0						
ReacDC	8	s	CaSO	Gp	dn_	G0d -897013						
	9	а	w_	H+	an_	G0d -897013						
→	10	а	w_	H2O@	an_	H0d -984675						

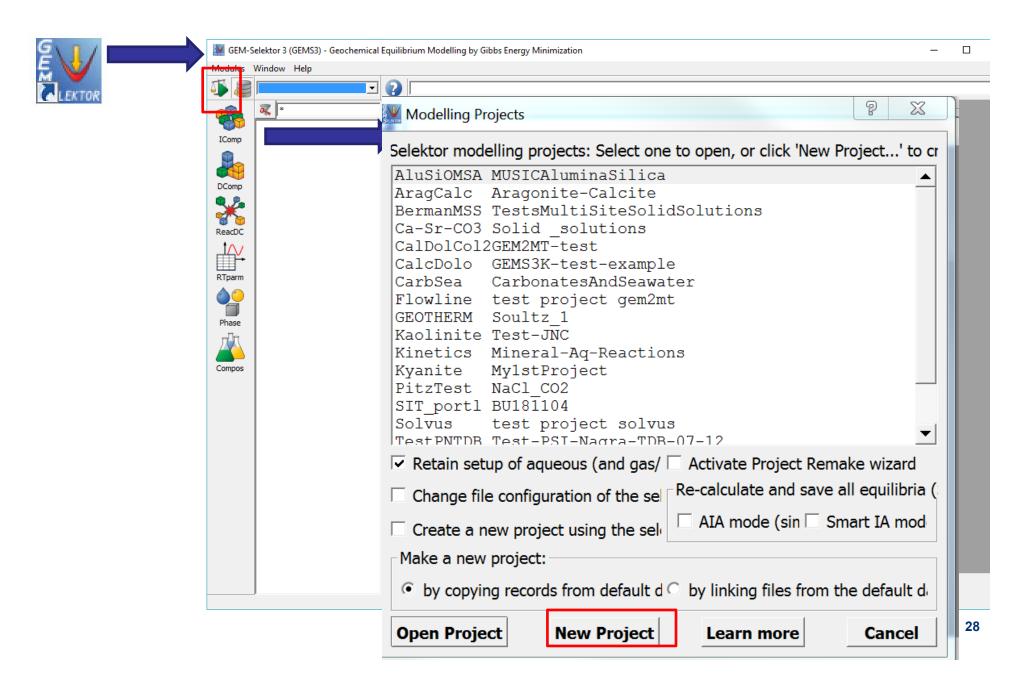
Access_database

Continue with tutorial C3A

First Tutorial – single systems: hydration of C₃A

Hydration of C₃A (Ca₃Al₂O₆)^a

- 1) Simulation of reaction $C_3A + CaO + CaSO_4$ Guided tutorial
- 2) Simulation of reaction $C_3A + CaO + CaCO_3$
- 3) Simulation of reaction $C_3A + CaCO_3$

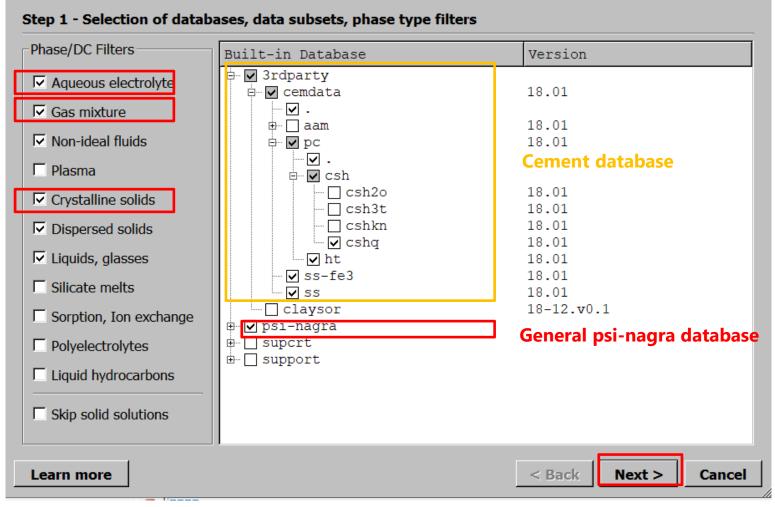

L Individual work

4) Simulation of reaction $C_3A + C + CaSO_4 + CaCO_3$

See Seligmann & Greening ICCC 1969 and various papers by Kuzel et al. (Kuzel & Pöllmann CCR 1991, Kuzel et. al CCR 1996) for experimental verification

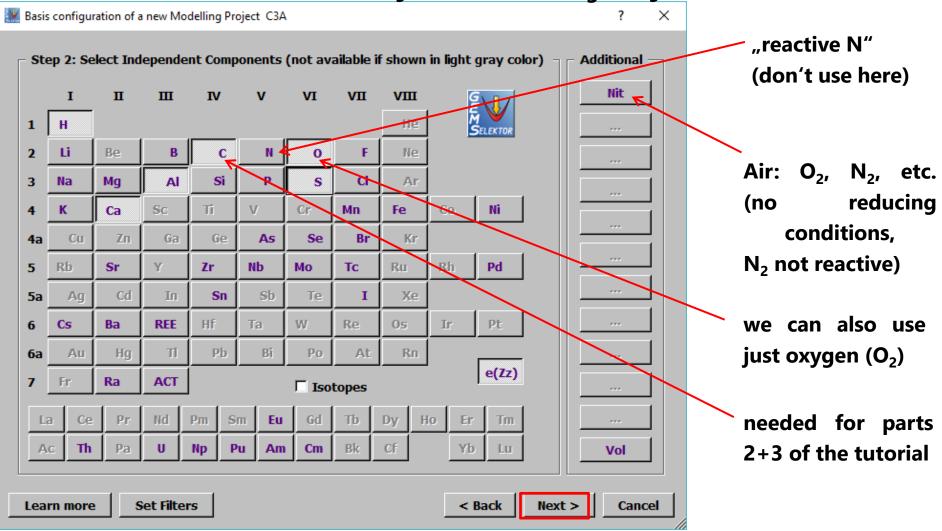
a cement notation C => CaO $A => AI_2O_3$ $S => SiO_2$ $H => H_2O$ $s => SO_3$ $c=> CO_2$ 27

Project: Enter a new record key, please	
C3A:GEMS2019:	
	C3A Name of the modeling project
GEMS2019	Comment to the project definition
Ok Reset From Lis	t Help Cancel



Select CEMDATA18 (3rd party data base)

Basis configuration of a new Modelling Project C3A


? ×

Recommended selection for PC and blended cements

Select elements necessary to model C₃A hydration

Select model for calculation of the aqueous phase

Setup of aqueous and gas phases in project: C3A	? ×
Select Aqueous Electrolyte Model Select Gas/Fluid Mixture Model	
 □ Ion-association (IA) with Davies equation, D (default) □ IA with extended Debye-Hueckel equation (Helgeson), common b_gamma and a0, H □ IA with extended Debye-Hueckel equation (Shvarov), common b_gamma and a0, Y □ IA with extended Debye-Hueckel equation (Karpov), common b_gamma, individual a0, 3 □ IA with Debye-Hueckel equation, no b_gamma, individual a0, 2 □ IA with Debye-Hueckel limiting law (very low ionic strength), 1 □ Do not generate; select a user-defined Phase record from database (Q, S, Z), U □ Do not include aqueous electrolyte phase into the system definition, N Phase record key: a AQELIA aq_gen aq EDH_H	Parameters for the aqueous phase model b_gamma(1,298) value: 0.123 b_gamma(P,T) mode KOH Common a0 value: 3.67 Gamma (neutral species) Calculate as b_gamma*IS Gamma (water solvent) From osmotic coefficient Molality conversion Applied to all species
OK Cancel 1. Check	Learn more More details

Activity coefficients

Activity coefficicient

Solubility product e. g. of gypsum

$$K_{S0} = \{Ca^{2+}\}\cdot\{SO_4^{2-}\}\cdot\{H_2O\}^2/\{CaSO_4\cdot 2H_2O\}$$

 $K_{S0} = \{Ca^{2+}\}\cdot\{SO_4^{2-}\} = 10^{-4.58}$
 $\{\}$: activity; []: concentration
 $\{Ca^{2+}\} = [Ca^{2+}]\cdot\gamma_{Ca2+}$ Activity coefficients

Correction of concentrations by activity coefficients, as the ions "feel" their neighbours (other ions, solvent). Activity coefficients depend mainly on:

- ionic strength
- other ionic species
- temperature

Activity vs. ionic strength

I < 1-2 M

I < 1 M

I < 0.3M

- selecting the right aqueous electrolyte model

Debye-Hückel

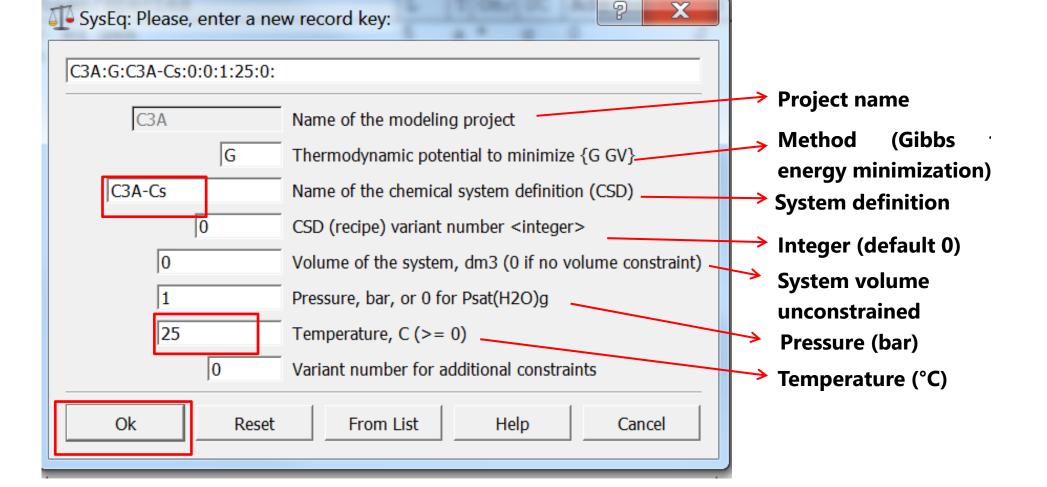
 $\log \gamma_{Ca^{2+}} = \frac{-AZ^2 \sqrt{I}}{1 + Ba\sqrt{I}} \quad \text{ionic strength } I < 0.1 \text{ M}$

Extended Debye-Hückel

$$\log \gamma_{Ca^{2+}} = \frac{-AZ^2\sqrt{I}}{1+Ba\sqrt{I}} + bI$$

common a, common b (Helgeson)

individual a, common b (Truesdell-Jones)


individual a, no b

Davies $\log \gamma_{Ca^{2+}} = -AZ^2 (\frac{\sqrt{I}}{1+\sqrt{I}} - 0.3I)$ 0.1 < I < 0.5 M

SIT
$$\log \gamma_{Ca^{2+}} = \frac{-AZ^2 \sqrt{I}}{1+1.5\sqrt{I}} + \sum \varepsilon m_k$$
 I < 3 M

The calculation of activity coefficients is available as built-in function in the GEMS code. For a detailed overview of different activity coefficients see:

C:\GEMS36\Gems3-app\Resources\doc\pdf\Activity-Coeffs.pdf and references therein

Avoid special signs such as \$ & % ä ö ü æ å ø 好 ...

We need a receipe

Input Recipe of Single Thermodynamic System: C3A-tut:G:C3A-Cs:0:0:1:25:0:								
tnam <mark>e</mark> C3A +	CaSO4		comn	nents	5			
Property	Selection		Recipe Input					
Compos (xa DComp (xd IComp (bi_) Phase (xp_) Kin.lower (d Kin.upper (c G0 shift (gE: Other Input	Al(OH)3 Al2O3 Aqua C12A7	C3A C4A CA CA2	^{>} roperty	Name	Quantity	Units		
Input quan Compos(iti B_ vector	tities of ons) contribu	iting to		1		•		
Learn more			Pr	int	ОК	Cancel		

1 Reaction of C₃A with calcium sulfate

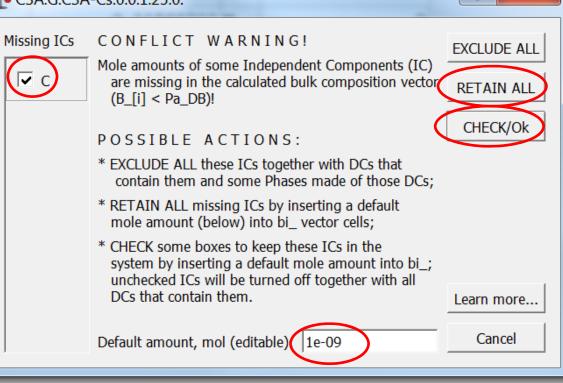
5 g C₃A + 2.52 g CaSO₄ + 2.5 g CaO + 50 g H₂O

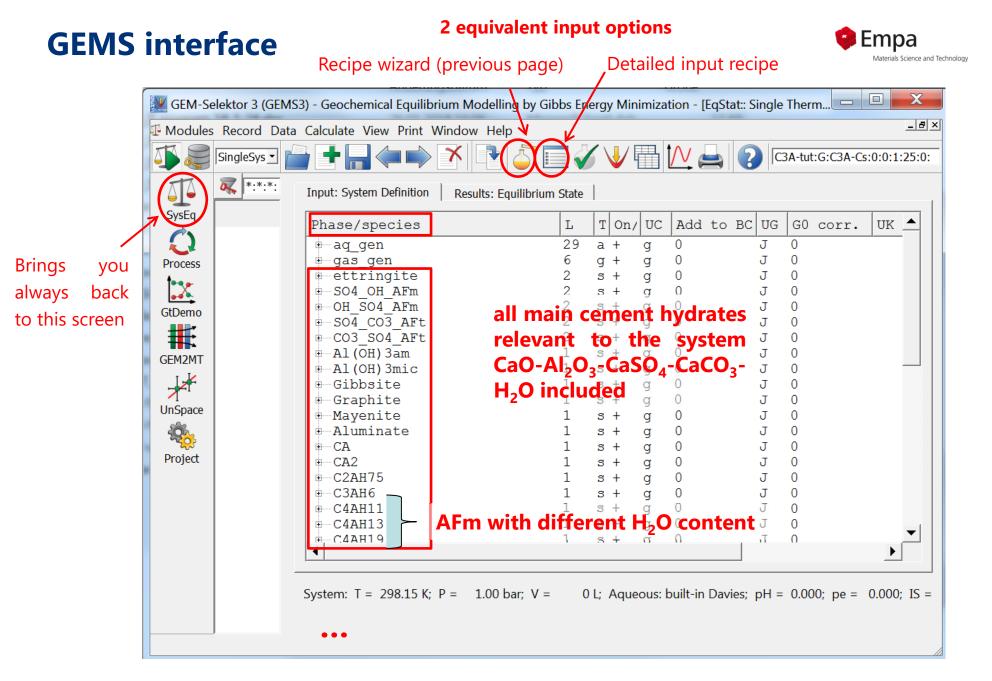
+ 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation)

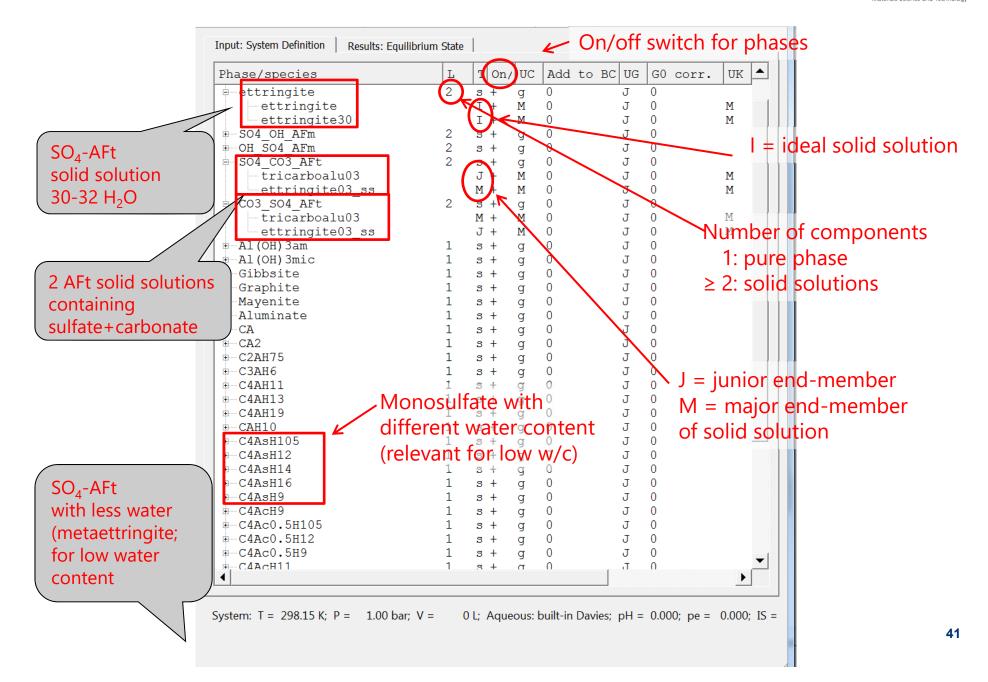

molar ratio $SO_3/AI_2O_3 = 1$, molar ratio $CO_2/AI_2O_3 = 0$

Reaction products?

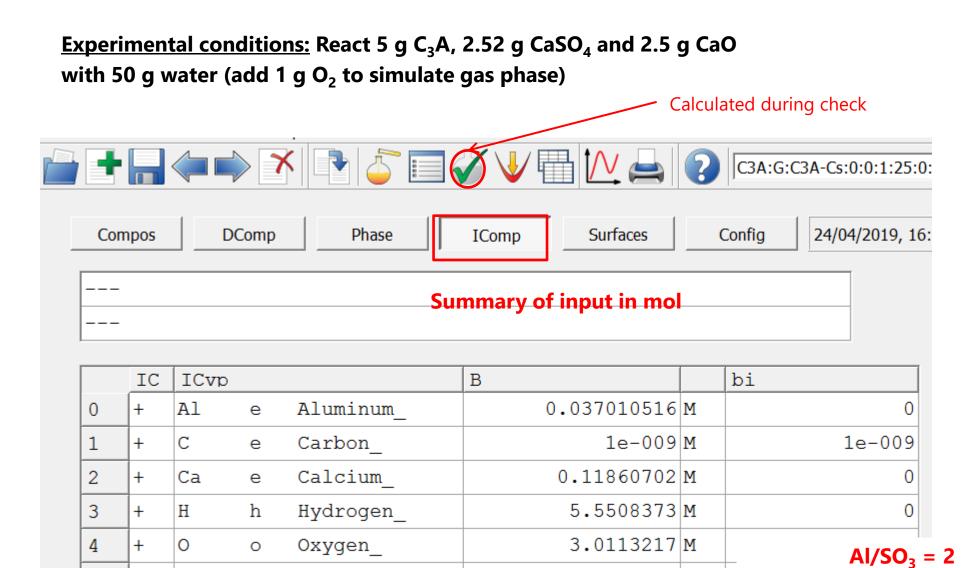
Expectation: monosulfate $Ca_4Al_2O_6SO_4$ 12H₂O No ettringite $Ca_6Al_2O_8S_3O_{12}$ 32H₂O




🕌 Input Recipe of	Single Thermo	odynamic Syst	tem: C3A:G:C3A	-Cs:0:0:1:25:0:						? ×
tname C3A + 0	CaSO4									
Property	Selection						Recipe In	out		
Compos (xa	AI(OH)3	C3A	CH4	СаО	H2	SO3	ropert	Name	Quantity	Jnits
DComp (xd IComp (bi_)	AI2O3	C4A3s	CO2	CaSO4	H2S	505	1 xa_	Aqua	50	g
Phase (xp_)	Aqua	CA CA2	Ca(OH)2 CaCO3	CaSO4_05H2O	H2SO4	_	2 xa_	C3A	5	g
Kin.lower (d Kin.upper (c	C12A7	CAZ	Cacos	Gypsum	02		3 xa_	CaO	2.5	g
G0 shift (gE:							4 xa_	CaSO4	2.52	g
Other Input							5 xa_	O2	0.1	g
	•					•	A	bit of O	₂ to	
							gu	arantee	e oxidizir	ng
Input quanti	ities of Comp	oos(itions) c	ontributing to	B_vector			CO	ndition	5	•
Learn more							Prii	nt	ОК	Cancel


we keep carbonate in this example

=> adds a very small amount of C (10^{-9} M), has a negligible effect



Hydration of C₃A + CaO + CaSO₄ – system creation (input[®] Empa

Experimental conditions: React 5 g C_3A , 2.52 g $CaSO_4$ and 2.5 g CaO with 50 g water (add 1 g O_2 to simulate gas phase)

			• 5		C3A-tut:G	:C3A-Cs:0:0:1:2	25:0:	
C	ompos	DComp	Phase IComp	Surfaces	Config	30/01/2018, 15	5:19	Detailed input recipe
C3 	A + C -	CaSO4	escription of ex	periment			▲	
Ma	isses	0	1 1	1	0	0		
Vc	lums	1	1 Procs	0	0	0		
	AC	CCvp			xa			
0	+	Al (OH) 3	MIN Aluminum-hy	vdroxide g		0		
1	+	A1203	MIN Aluminum-ox	ide_1M_ g		0		
2	+	Aqua	AQ 1_mole_H2O_	_ g		50	→	
3	+	C12A7	MIN Mayenite_1M	1_ g		0		
4	+	СЗА	MIN Tricalcium	alumina… g		5	→	
5	+	C4A3s	MIN Yeelimite_1	.Mg		0		Input generated before
6	+	CA	MIN Calcium_alu	minate g		0		by the input wizard
7	+	CA2	MIN Calcium_dia	luminat… g		0		
8	+	CH4	GA Methane_1M_	_ g		0		=> 2 equivalent options
9	+	CO2	GA Carbon-diox	ide_1M_ g		0		to input data
10) +	Ca (OH) 2	MIN Calcium-hyd	lroxide g		0		
11	. +	CaCO3	MIN Calcium-car	bonate g		0		
12	2 +	CaO	MIN Calcium-oxi	.de_1M_ g		2.5	→	
13	3 +	CaSO4	MIN Calcium-sul	fate_1M_ g		2.52	→	
14	+	CaSO4_05H2O	MIN hemihydrate	e_1M_ g		0		
15	5 +	Gypsum	MIN Ca-sulfate-	2H2O-1M_ g		0		
16	5 +	H2	GA Hydrogen_1M	Ig		0		
17	+	H2S	GA Hydrogen-su	lfide_1… g		0	-	

0.018510003 M

0 M

Sulfur

Electric cha...

5

6

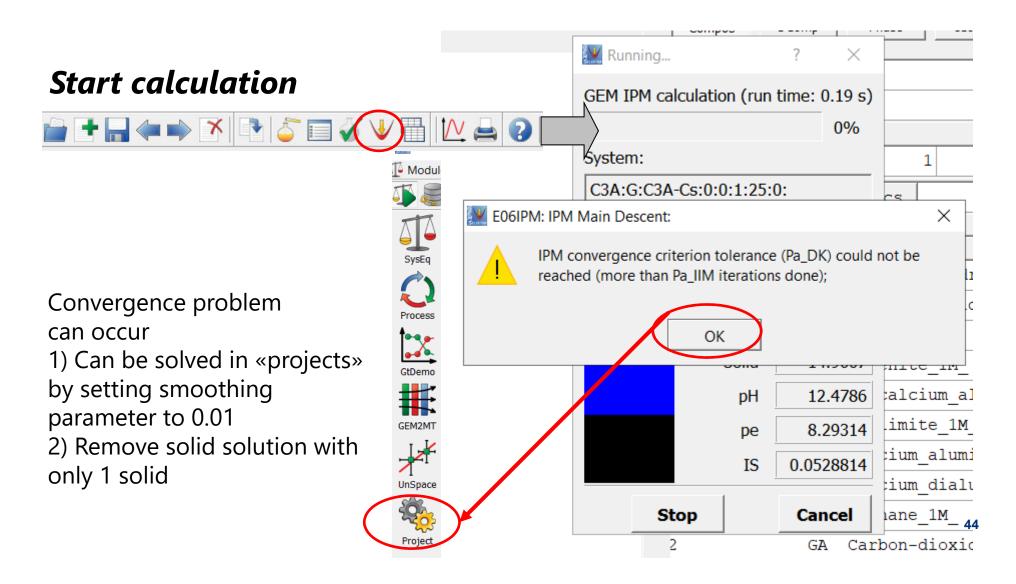
+

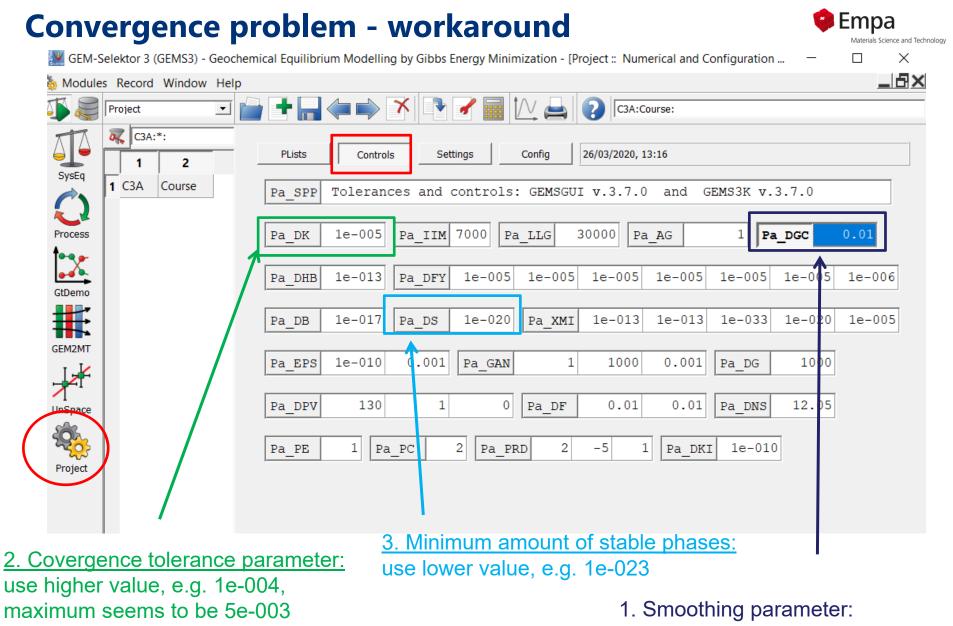
+

S

Ζz

е


Ζ


43

 $A/S = AI_2O_3/SO_3 = 1$

Hydration of C₃A + CaO + CaSO₄ – calculation of equilibritien

Experimental conditions: React 5 g C_3A , 2.52 g $CaSO_4$ and 2.5 g CaO with 50 g water (add 1 g O_2 to simulate gas phase)

use low positive value, e.g. 0.01 => 0.01 works

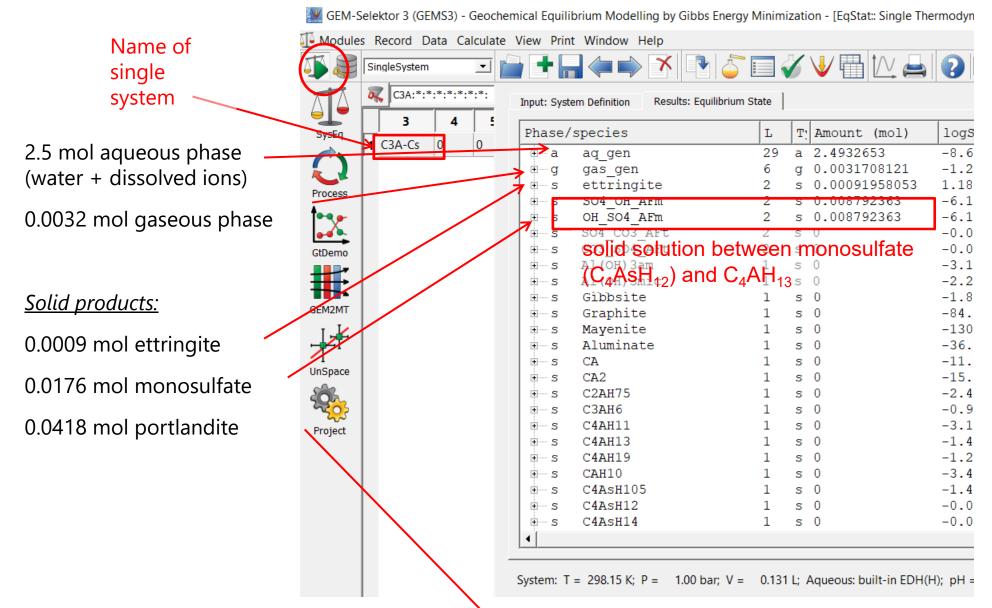
Do not touch the other values !!!

45

Hydration of C₃A + CaO + CaSO₄ – calculation of equilibrium

d Technology

Experimental conditions: React 5 g C_3A , 2.52 g $CaSO_4$ and 2.5 g CaO with 50 g water (add 1 g O_2 to simulate gas phase)


Start calculation

🚩 Convergeo	d at DK=1e	? ×	
GEM IPM ca	Iculation (run t	time: 0.013	3 s
		1009	6
System:			
C3A:G:C3A	-Cs:0:0:1:25:0):	
	Iter	1: 8:356	5
	Gaseous	0.10002	5
	Aqueous	44.939	6
	Liquid		0
	Solid	15.080	4
	pН	12.476	5
	pe	8.2962	1
	IS	0.052591	7
Accept		Dismiss	
	1	5 ()	

SingleSystem	• + 🔒 🦛 🔹 🛪 🖪	h 🕹 🗖 🎸 🔶 🛗 🗠 d	C3A:G:C3A-Cs:0:0:1:25:0:	
C3A:*:*:*:*:*:*:	Input: System Definition Results: Ed	juilibrium State		
	Phase/species	L T: Amount (mol)	logSI/Activity Concent	rat_
1 C3A-Cs 0 0	a aq gen	29 a 2.4932653	-8.615e-09	
) T	g gas gen	6 g 0.0031708121	-1.23e-09	
	s ettringite	2 s 0.0009195805	3 1.187e-06	
ess	s SO4 OH AFm	2 s 0.008792363	-6.154e-08	
	B OH SO4 AFm	2 s 0.008792363	-6.154e-08	
	s SO4 CO3 AFt	2 s 0	-0.03101	
	s CO3 SO4 AFt	2 s 0	-0.03101	
	s Al (OH) 3am	1 s 0	-3.174	
single	🗉 s Al(OH)3mic	1 s 0	-2.264	
	🗉 s Gibbsite	1 s 0	-1.811	
MT system	🗄 s Graphite	1 s 0	-84.68	
	🗉 s Mayenite	1 s 0	-130.4	
<u>*</u>	🗄 s Aluminate	1 s 0	-36.48	
	s CA	1 s 0	-11.04	_
ace	±s CA2	1 s 0	-15.19	
2	s C2AH75	1 s 0	-2.469	
<mark>6</mark> ≩]\	s C3AH6	1 s 0	-0.9693	
ect	. s C4AH11	1 s 0	-3.156	
Calculatio	C4AH13	1 s 0	-1.422	
Calculatic	. s C4AH19	1 s 0	-1.222	
	s CAH10	1 s 0	-3.47	
	s C4AsH105	1 s 0	-1.423	
	s C4AsH12	1 s 0	-0.07732	
	s C4AsH14	1 s 0	-0.05177	•

Solid solutions

				,	
Phase/species	L	T	Amount (mol)	logSI/Activity	Concentrat ^
🗉 a aq gen	29	a	2.4932653	-8.615e-09	
∃ g gas gen	6	g	0.0031708121	-1.23e-09	
s ettringite	2	s	0.00091958053	1.187e-06	
ettringite		I	0.00073534039	0.79965	0.79964763
ettringite30		I	0.00018424014	0.200353	0.20035237
S SO4_OH_AFM	2	S	0.008/92363	-6.154e-08	
C4AH13		J	0.00091690195	0.0378465	0.10428391
monosulphate12		М	0.007875461	0.836918	0.89571609
∋ s OH_SO4_AFm	2	s	0.008792363	-6.154e-08	
C4AH13		М	0.00091690195	0.0378465	0.10428391
monosulphate12		J	0.007875461	0.836918	0.89571609
s SO4_CO3_AFt	2	s	0	-0.03101	
tricarboalu03		J	0	0.00244367	0
ettringite03 ss		М	0	0.929907	0
s CO3 SO4 AFt	2	s	0	-0.03101	
tricarboalu03		М	0	0.00244367	0
ettringite03_ss		J	0	0.929907	0
s Al(OH)3am	1	S	0	-3.174	
AlOHam		0	0	0.000669392	0
AlOHam		0	0	0.000669392	0

ideal solid solution:

Non ideal solid solution:

80 mol-% ettringite-32H₂O 20 mol-% ettringite-30 H₂O

10 mol-% C_4AH_{13} 90 mol-% C_4ASH_{12}

Incomplete solid solution (hardly any CO₃ endmember; normally not stable, can be deactivated:

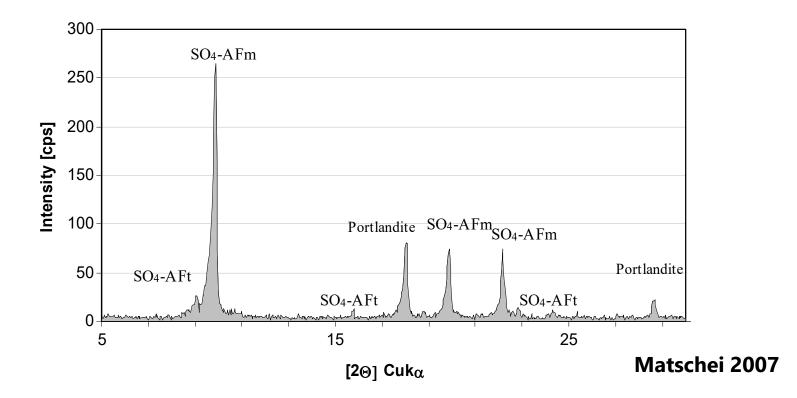
Phase/species	L	1	On/	UC	Add	to BC	UG	G0	corr.	UK	Lower_KC	Upper_KC	KC type
<pre>ettringite</pre>	2	s	+	g	0		J	0					
⊕ SO4 OH AFm	2	s	+	g	0		J	0					
⊕ OH SO4 AFm		S	+	g	0		J	0					
= SO4 CO3 AFt	2	S	-	g	0		J	0					
-tricarboalu03		J	-	M	0		J	0		М	0	1000000	В
ettringite03 ss		Μ	[-]	М	0		J	0		М	0	1000000	В
CO3 SO4 AFt	2	s	-	g	0		J	0					
tricarboalu03		Μ	[_]	M	0		J	0		М	0	1000000	В
ettringite03 ss		J	· _	М	0		J	0		М	0	1000000	В
Al (OH) 3am		s	+	g	0		J	0					
Al (OH) 3mic		s	+	ğ	0	R	J	0					
Gibbsite	1	s	+	ģ	0		J	0					
- Craphita	1	~		~	Δ		т	2					

As we have very little carbonate in the system in the first calculation we may switch off the carbonatesulfate AFt solid solutions

(In the input page)

	es Record Data Calculat							
0	SingleSystem			Y 🕒 💷 (G:C3A-Cs:0:0:1:25:0:	
17	C3A:*:*:*:*:*:*:	Input: Syst	em Definition Results: I	Equilibrium State		'\		
	3 4 5				1 1			
/sEq	1 C3A-Cs 0 0	Phase/	species	L	T _! Amoun	it (mol) logSI/Ac	ctivity Concent	.rat_
	1 C3A-Cs 0 0	± a	aq gen	29	a 2.493	2653 1 .643e-0)9	
J		± g	gas gen	6	g 0.003	1708119 2.854e-0)8	
		±	ettringite	2	s 0.000	91958291 -2.007e-	-07	
cess		±	SO4 OH AFm	2	s 0.008	7923615 2.748e-0	View	
• 🗩			OH SO4 AFm	2	s 0.008	7923615 2.748e-0)8	
<u> </u>			Al(OH) 3am	1	s 0	-3.174	، ما : ما م	باريم من ار
emo			Al(OH)3mic	1	s 0	-2.264	detailed	a result
			Gibbsite	1	s 0	-1.811		
			Graphite	1	s 0	-84.68		
		±	Mayenite	1	s 0	-130.4		
2MT			Aluminate	1	s 0	-36.48		
		±	CA	1	s 0	-11.04		
		±	CA2	1	s 0	-15.19		
		±	C2AH75	1	s 0	-2.469		
pace		±	C3AH6	1	s 0	-0.9693		
ß		±	C4AH11	1	s 0	-3.156		
õ?		±	C4AH13	1	s 0	-1.422		
~		±	C4AH19	1	s 0	-1.222		
ject		±	CAH10	1	s 0	-3.47		
		+ S	C4AsH105	1	s 0	-1.423		
		±	C4AsH12	1	s 0	-0.07732	2	
		±	C4AsH14	1	s 0	-0.05177		
		±	C4AsH16	1	s 0	-0.1373	' '	
		±	C4AsH9	1	s 0	-3.442		-
				-				

General information: pH, ionic strength, redox, ...


Detailed information about composition of aqueous, gaseous and solid phases

EqDemo	Ec	IC	EqPh E	EqDC		Gen 26/03/2020, 13:3	:C3A-Cs:0:0:1:25:0:		
3 1 C3A-Cs 0	C3A 	+5	olid pha	ase			Volume [cm³]	Mass <i>[g]</i>	
ISS					[mol]			-	_
<u> </u>	0	PHi	nam	L1 29	Xa 2.4932653	Fa 1.6432721e-009	phVol 44.984034	phM 44.939588	m _{SO4-AFt} = 1.15 g
no	1	-	aq_gen gas_gen	6	0.0031708119			0.10002508	
	2	g s	ettringite	2	0.00091958291			1.1475405	1
мт	3	s	SO4 OH AFm	2				5.4165243	-
	4	s	OH SO4 AFm	2	0.0087923615			5.4165243	-
ce ce	5	s	Al (OH) 3am	1	0.0007923013			\sim	
ce	6	s	Al (OH) 3mic	1	0				$\mathbf{m}_{\mathrm{SO4-AFm}} = 10.83$
	7	s	Gibbsite	1	0			0	
2	8	s	Graphite	1	0			0	
	9	s	Mayenite	1	0			0	-
	10	s	Aluminate	1	0			0	-
	11	s	CA	1	0			0	
	12	s	CA2	1	0			0	-
	13	-	C2AH75	1	0			0	-
	4								
									n _{Portlandite} = 3.10 g

Comparison to experiments:

Hydration of C₃A at SO₃/Al₂O₃ = 1, cured 28 d at 25°C, solid phases by XRD

Qualitatively very good agreement between experimental and calculated results Phase assemblage SO_4 -AFm - SO_4 -AFt - portlandite - aq. predicted and observed. Quantification with help of GEMS possible.

Composition of aqueous phase

EqIC EqPh EqDC EqSurf EqGen 26/03/2020, 13:36 C3A + CaSO4 Output: total molalities in aqueous phase (mol/kg H ₂ O) Output: total molalities in aqueous phase (mol/kg H ₂ O)												
	ICn	nam	b	Cb	u	lgm t	m t	ICnam				
0	Al		0.037010516	1.3578917e-017	-324.92795	-4.3723484	4.2427904e-005	Al				
1	С		1e-009	-2.6864406e-026	-194.9941	-7.6519556	2.2286631e-008	с…				
2	Ca		0.11860702	-1.5518762e-017	-266.15404	-1.6910673	0.020367266	Ca				
3	Н		5.5508373	1.241501e-016	-47.83096	-1.390652	0.040676917	н				
4	0		3.0113217	-9.3112574e-017	-0.016474237	-1.3631496	0.043336159	0				
5	s		0.018510003	0	-275.13628	-5.1208648	7.5706847e-006	s				
6	Zz		0	2.0011687e-020	19.102731	0	-6.3290455e-019	Zz				

total mol in system (input) Log₁₀ of total molalities

Hydration of $C_3A (Ca_3Al_2O_6)^a$ 1) Simulation of reaction $C_3A + CaO + CaSO_4$ Guided tutoria 2) Simulation of reaction $C_3A + CaO + CaCO_3$ 3) Simulation of reaction $C_3A + CaCO_3$ 4) Simulation of reaction $C_3A + C + CaSO_4 + CaCO_3$

See Seligmann & Greening ICCC 1969 and various papers by Kuzel et al. (Kuzel & Pöllmann CCR 1991, Kuzel et. al CCR 1996) for experimental verification

Hydration of C₃A + CaCO₃

Experimental problem part 2: Reaction of C_3A with CaO plus calcium carbonate

5 g C₃A + 1.86 g CaCO₃ + 2.5 g CaO + 50 g H₂O

+ 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation)

molar ratio $SO_3/AI_2O_3 = 0$, molar ratio $CO_2/AI_2O_3 = 1$

Experimental problem part 3:

Reaction of C₃A with calcium carbonate (no surplus of CaO)

5 g C₃A + 1.86 g CaCO₃ + 50 g H₂O

+ 0.1 g O_2 (oxidizing conditions, CO_2 -free = no carbonation) molar ratio $SO_3/Al_2O_3 = 0$, molar ratio $CO_2/Al_2O_3 = 1$

Hydration of C₃A + CaCO₃ + CaSO₄

Experimental problem part 4:

Reaction of C₃A with CaO, calcium carbonate, calcium sulfate

5 g C₃A + + 1.86 g CaCO₃ + 2.52 g CaSO₄ + 2.5 g CaO + 50 g H₂O + 0.1 g O₂ (oxidizing conditions, CO_2 -free = no carbonation)

molar ratio $SO_3/AI_2O_3 = 1$, molar ratio $CO_2/AI_2O_3 = 1$

Hydration of C₃A + CaCO₃ and/or CaSO₄

Experimental problem part 2 - 4

Hints:

- Create new system for part 2
- Keep carbonate solid solutions switched on
- For part 3 + 4 it might be convenient to clone the system from part 2 (only if we keep S in the system)