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based on 2°Si MAS NMR spectra

Why implement kinetic aspects into your modelling?

Kinetic aspects might modify or prevent that a phase assemblage
reaches its thermodynamic equilibrium within the experimental time.

To model these aspects, further boundary conditions need to be
implemented.

This presentation is going through such an example for a binder
consisting of:

white Portland cement (wPc),
metakaolin (MK)
limestone (LS)
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Common approaches:

No hydration kinetics
Fixed hydration degree

Using empirical models

Using experimental data
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 Empirical models
1. Based on sets of experimental data
2. Imply the independence of hydration of different phases
3. Surface area, w/c
4. No input for non-clinker-phases

 Experimental data

1. Imply the independence of hydration of different phases
2. Based on experimental data

3. Tailored for your binder

4. Include possibly rates for hydration of SCM’s

*L.C. Parrott & D.C. Killoh.
“Prediction of cement hydration”
British Ceramic Proceedings 35 (1984), 41-53
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Based on empirical models Based on 2°Si MAS NMR data

—o—Alite
——Belite

degree of hydration [%]

hydration time [d]

. 1: Hydration of alite by x-ray diffraction
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Fig. 2: Hydration of belite by x-ray diffraction
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How to implement metakaolin hydration?

White PC + metakaolin

stratlingite

”kaolinite”

high C/S low C/S
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White PC + metakaolin + limestone
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XRD: modeled:
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Or “how to use a by-product”

6 mixes + 2 references (WPc, 35%L5S)

MK+LS:
29Si MAS NMR (1d, 2d, 7d, 14d, 28d, 63d, 182d)
27TAl MAS NMR (14d, 28d, 182d)
XRD (14d, 28d, 182d) phase characterization

hydration degree

* First publication:

Z. Dai, T.T. Thuan and J. Skibsted.

“Aluminum incorporation in the C-S-H phase of white Portland cement — metakaolin blends studied by 27Al and 2°Si MAS NMR
spectroscopy,”

J. Am. Ceram. Soc. (accepted) 10
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(a) the anhydrous white Portland cement

(b) metakaolin

hydrated for one day

hydrated for 180 days
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Z. Dai, T.T. Thuan and J. Skibsted.
“Aluminum incorporation in the C-S-H phase of white Portland cement — metakaolin blends studied by 27Al and 2°Si MAS NMR

spectroscopy,”
J. Am.Ceram. Soc. (accepted 11
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dissolved material / 100g binder
dissolved material / 100g binder
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Best fit with a dissolution equation: 0.94

Q(t) = ke @

k= dissolved material
1= rate constant

dissolved material / 100g binder

100

time [hours]

unreacted alite 1% 3% 4% 4%
unreacted belite 2% 4% 5% 5%
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Hydration modelling in GEMS with kinetics yﬂlANO
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XRD data show a good agreement with the predicted phases! &I
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The predicted phase assemblages in real systems might differ from
equilibrium conditions (full hydration).

In those cases can the implementation of hydration kinetics
improve the predicted phase assemblage significantly.

29Si MAS NMR can be utilized as technique to determine the degree
of hydration.

In this example was the reacted material implemented into GEMS via
a simple exponential “dissolution” function. This equations
introduces two parameters - one rate and one mass parameter -
which were fitted to represent the experimental data.

The suppression of stratlingite formation could be modeled
successfully, including the complex AFm phase assemblage at high
MK substitutions.




