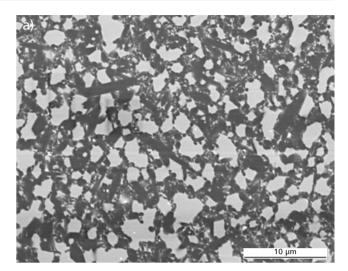
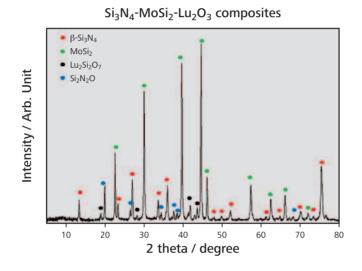
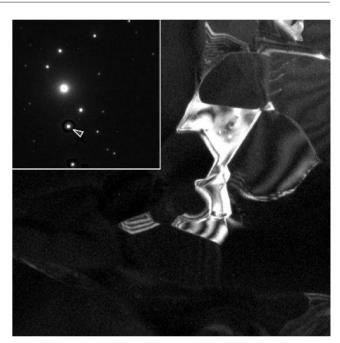
The Effect of Sintering Additives on the Mechanical, Oxidation and Electrical Properties of Si₃N₄/MoSi₂ Composites

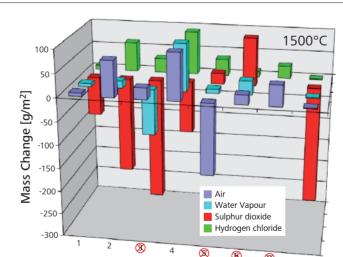


Jakob Kuebler^{1*}, Zhiquan Guo¹, Gurdial Blugan¹, Magdalena Parlinska-Wojtan¹, Mike Reece², Thomas Graule¹


Microstructure and properties of electrically conductive Si_3N_4 -MoSi₂ composites using different sintering additive systems [a) YAG; b) LuO₂]) were investigated. MoSi₂ (white grains) reacted with N₂ atmosphere during sintering resulting in the formation of Mo₅Si₃.

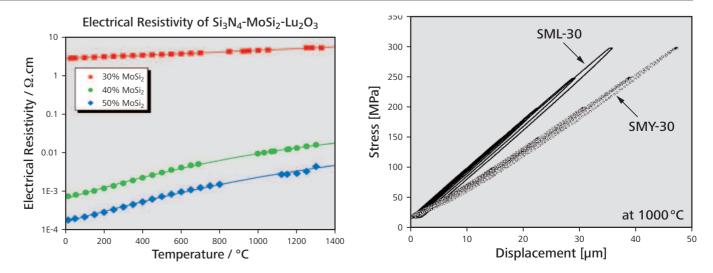

Composites doped with Y_2O_3 - Al_2O_3 had an amorphous grain boundary phase, while the grain boundary phase of the Lu_2O_3 -doped composites was completely crystallized into $Lu_2Si_2O_7$. 50 SF-1

Sintered in Nitrogen



Sintered in Argon

 Lu_2O_3 -doped composites had superior oxidation resistance compared to the composites containing Y_2O_3 -Al₂O₃. Parabolic oxidation kinetics were observed in the composites with both types of additives.



1) $Si_3N_4 + Al_2O_3$ 2) $Si_3N_4 + Al_2O_3 + Y_2O_3$ 3) $Si_3N_4 + HgO$ 4) $Si_3N_4 + HgO$ 5) $Si_3N_4 - MOSi_2 + Al_2O_3 + Y_2O_3$ 6) $Si_3N_4 - MOSi_2 + MgO$ 9) $Si_3N_4 - TIN + Al_2O_3 + Y_2O_3$ 10) $Si_3N_4 + Lu_2O_3$

⊗ failed before reaching 128 h

(Metallic-like) electrical conductivity of the composites exhibited typical percolation type behaviour. Composite containing Lu₂O₃ (SML-30) had a higher elastic modulus and better creep resistance at elevated temperatures than the one doped with Y_2O_3 -Al₂O₃ (SMY-30). Toughness and strength were not influenced significantly by the grain boundary phase.

* jakob.kuebler@empa.ch
¹ Empa Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland.
² Queen Mary College, University of London, Mile End Road, London E2 4NS, UK