European atmospheric $^{14}\text{CO}_2$ activities within the ICOS-RI network

Samuel Hammer1, S. Conil2, Marc Delmotte3, Arjan Hensen4, Meelis Mölder5, Michel Ramonet3, Marcus Schumacher6, T. Gerard Spain7, Ingeborg Levin8

1 ICOS Central Radiocarbon Laboratory, Heidelberg University, Heidelberg, Germany
2 Direction Recherche & Développement, Andra, CMHM, RD960, 55290 Bure France
3 Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA - Orme des Merisiers 91191 Gif sur Yvette, France
4 Energy research Centre of the Netherlands (ECN), Petten, the Netherlands
5 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
6 German Meteorological Service, Meteorological Observatory Hohenpeissenberg, Germany
7 National University of Ireland Galway, Galway, Ireland
8 Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany

Radiocarbon in atmospheric CO_2 has successfully proven to be a very powerful tracer for carbon cycle studies and for quantifying CO_2 originating from the combustion of fossil fuels. The European research infrastructure ICOS (ICOS-RI.eu) has thus selected $^{14}\text{CO}_2$ as one of the key-species to be sampled at all atmospheric ICOS class 1 stations and to be analysed at the ICOS Central Radiocarbon Laboratory. ICOS follows a two-pronged sampling strategy for $^{14}\text{CO}_2$. On the one hand, flask samples will be collected during predefined meteorological conditions; on the other hand continuous, two-weekly integrated samples will be collected to estimate long-term trends of fossil fuel CO_2 at the sites.

We present the first results of ICOS integrated $^{14}\text{CO}_2$ samples from 10 European stations, starting in 2015. These measurements provide an overview of the current $^{14}\text{CO}_2$ levels at predominantly background stations and illustrate the influence from regional fossil fuel sources at individual stations.