

Potential von Laubholz im Tragwerksbau

Thomas Ehrhart

Schnetzer Puskas Ingenieure AG Basel | Bern | Zürich | Berlin

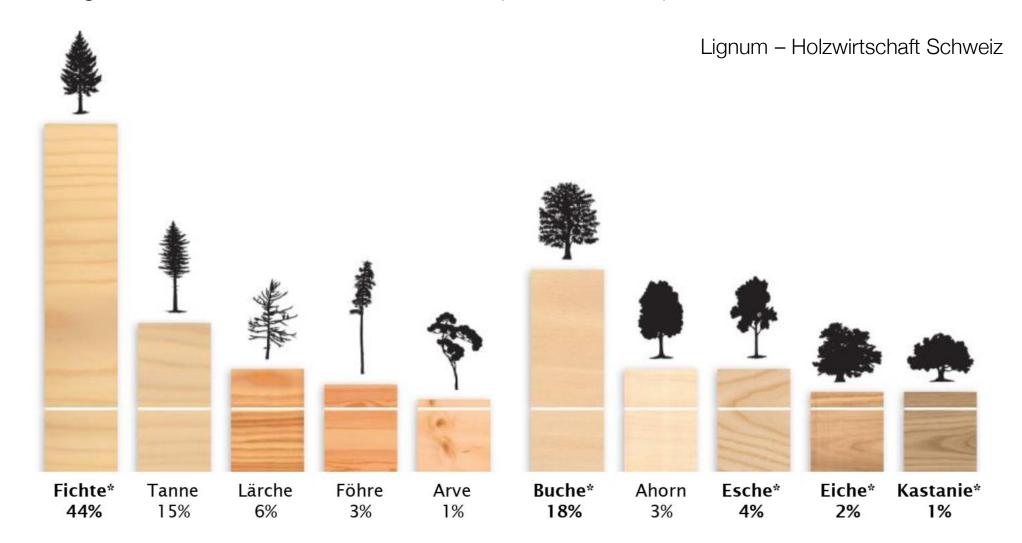
Empa Technology Briefing - Laubholz im Tragwerksbau | 5. Juli 2023

Trend 1 – Veränderung der Baumarten in den heimischen Wäldern

Trend 2 – Holz erobert die Städte und moderne Architektur

Zwei Trends – Eine grosse Chance

Mischwälder mit steigendem Laubholzanteil & rückläufigem Fichtenbestand


Stetig steigendes Interesse am Baustoff Holz & höhere Anforderungen an die mechanischen Eigenschaften

...welches Potential bietet Laubholz im Tragwerksbau?

Die wichtigsten Laubholzarten in der Schweiz (Sicht Holzbau)

Die wichtigsten Laubholzarten in der Schweiz (Sicht Holzbau)

Baum

Fichte

Buche Esche Eiche Edelkastanie

Die wichtigsten Laubholzarten in der Schweiz (Sicht Holzbau)

Holz

Fichte

Buche Esche Eiche Edelkastanie

Die mechanischen Eigenschaften von BSH aus Buche und Esche (im Vergleich zum Nadelholz GL28h)

SIA 265

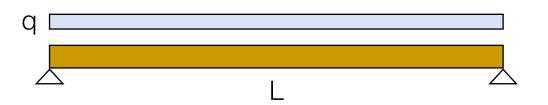
Die technischen Helzinformationen der Lignum

Verklebte Laubholzprodukte für den statischen Einsatz

SIA BFH ETH HEIG-VD Lignum

Lignatec Laubholz		Fic	hte	Buche		Esche		
		GL28h		BU-GL48h		ES-GL48h		
			N/mm2	%	N/mm2	%	N/mm2	%
	Biegung	$f_{m,d}$	18.7	100	32.0	171	32.0	171
	Zug par.	$f_{t,0,d}$	14.9	100	25.0	168	25.0	168
Fest.	Druck par.	$f_{c,0,d}$	18.7	100	32.0	171	30.7	164
rest.	Zug quer	f _{t,90,d}	0.2	100	0.3	200	0.3	200
	Druck quer	f _{c,90,d}	2.0	100	5.0	250	5.0	250
	Schub	$f_{v,d}$	1.8	100	3.2	178	3.2	178
	E-Modul par.	E _{0,mean}	12600	100	15400	122	15000	119
Steif.	E-Modul quer	E _{90,mean}	300	100	1100	367	1000	333
	Schubmodul	G _{mean}	650	100	1100	169	1000	154

... Einsatz mit **kleinem** Vorteil von Laubholzprodukten (aktuell & aus statischer Sicht)

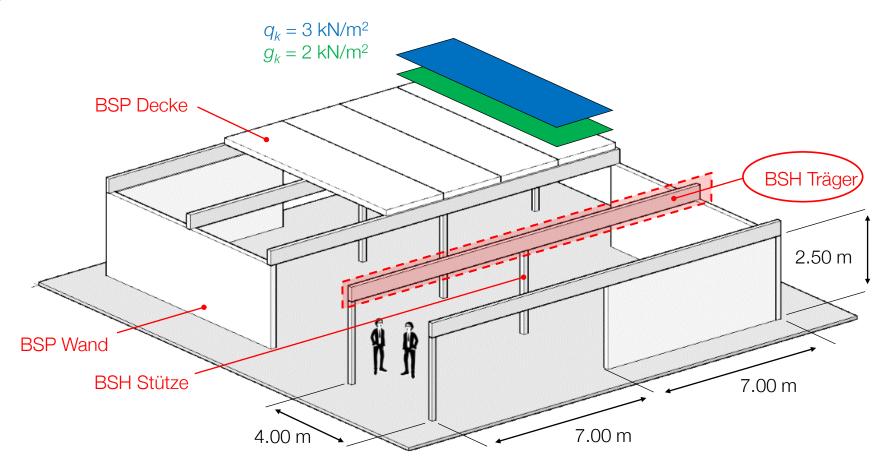

<u>Einfeldträger</u>

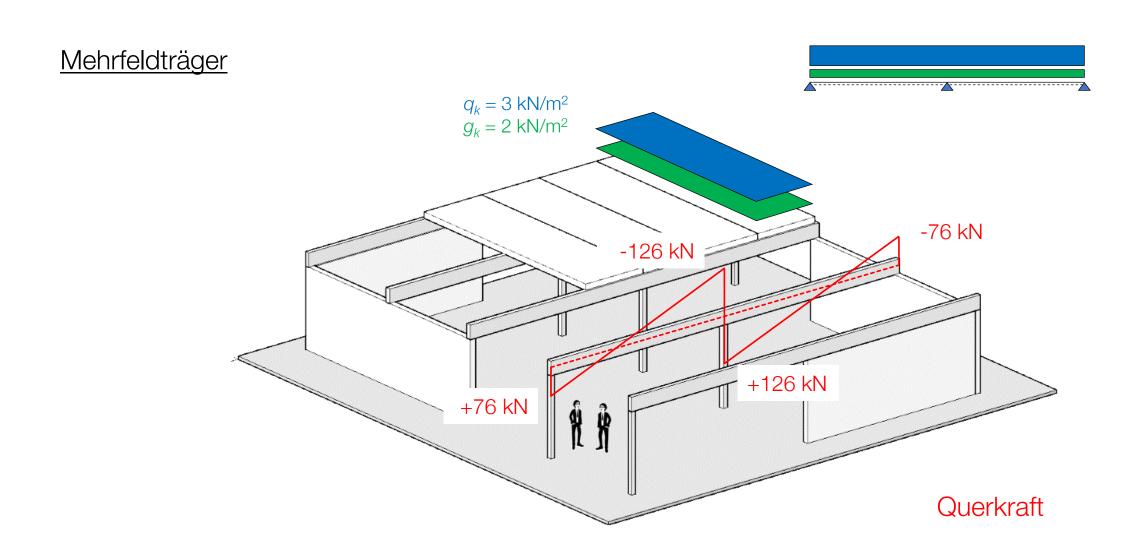
GZT / Biegespannungen

$$\sigma_m = \frac{M}{W} \to f_{m,d} \cdot h^2 \ge \frac{6 \cdot M}{b}$$

GZG / Durchbiegung

$$w = \frac{5}{384} \cdot \frac{q \cdot L^4}{EI} \to E_{0,mean} \cdot h^3 \ge X \cdot \frac{q \cdot L^3}{b}$$

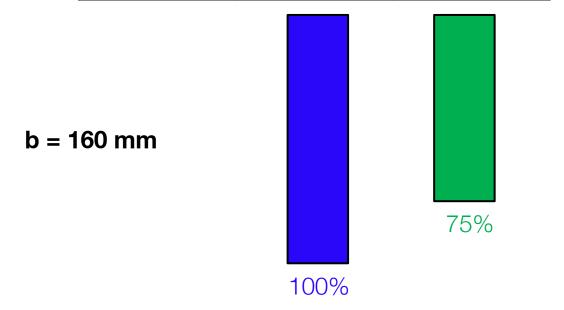



GZT		GL28h	BU-GL48h
· ·	N/mm2	18.7	32
t _{m,d}	%	100	171
h	mm	600	458
n	%	100	76

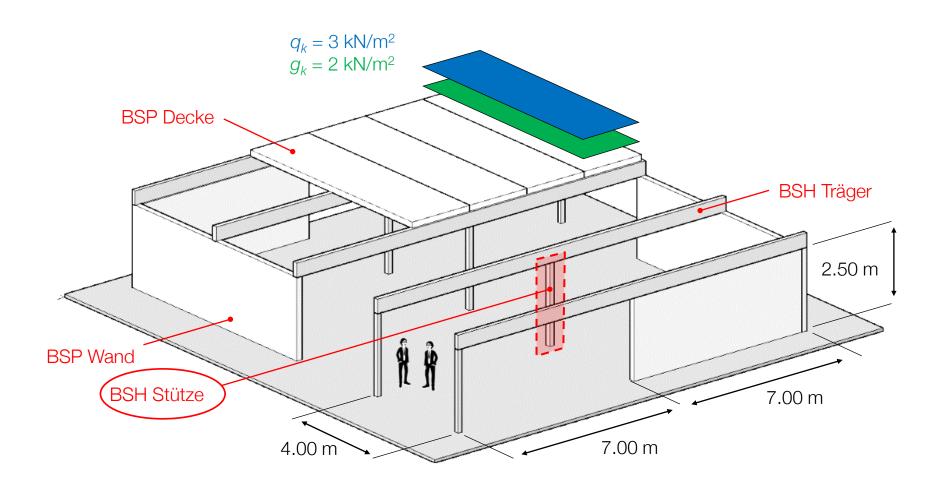
GZG		GL28h	BU-GL48h
Е	N/mm2	12600	15400
E _{0,mean}	%	100	122
h	mm	600	562
	%	100	94

... Einsatz mit **grossem** Vorteil von Laubholzprodukten (ausgewählte Beispiele)

<u>Mehrfeldträger</u>


<u>Mehrfeldträger</u> $q_k = 3 \text{ kN/m}^2$ $g_k = 2 \text{ kN/m}^2$ -176 kNm 100 kNm 100 kNm Biegemoment

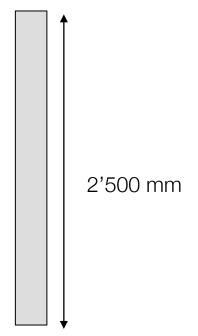
<u>Mehrfeldträger</u> $q_k = 3 \text{ kN/m}^2$ $g_k = 2 \text{ kN/m}^2$ \leq 20 mm = 7000 / 350


Durchbiegung

<u>Mehrfeldträger</u>

Massgebender Nachweis und Querschnittshöhe				
	GL28k GL48k			
Schub	660 mm	300 mm		
Biegung	600 mm	460 mm		
SLS	530 mm	490 mm		

<u>Stützen</u>



SCHNETZER PUSKAS INGENIEURE

<u>Stützen</u>

		Nadelholz GL28h	Buche GL48h	Schleuder- beton
а	mm	250	250	250
L	mm	2'500	2'500	2'500
$f_{\rm c,0,d}$	N/mm ²	18.7	32.0	C75/90
$E_{0,05}$	N/mm ²	10'200	13'200	
λ_{rel}	-	0.56	0.71	
K	-	0.67	0.77	
$k_{\rm c}$	-	0.96	0.93	
F_{Rd}	kN	1020	1900	1855+

Stützen

Schneelast: Standort Zürich

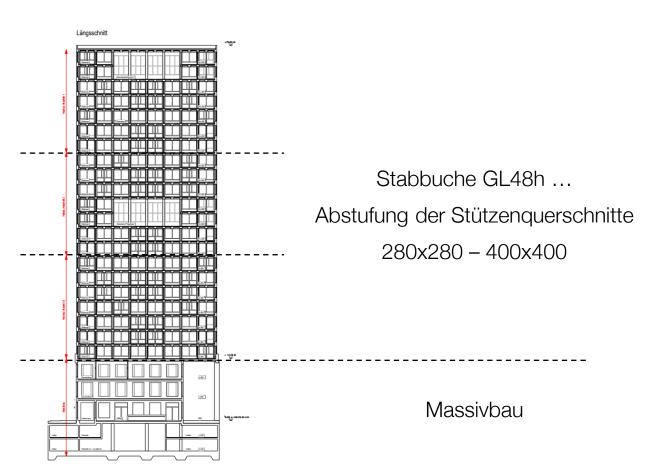
4 Geschosse

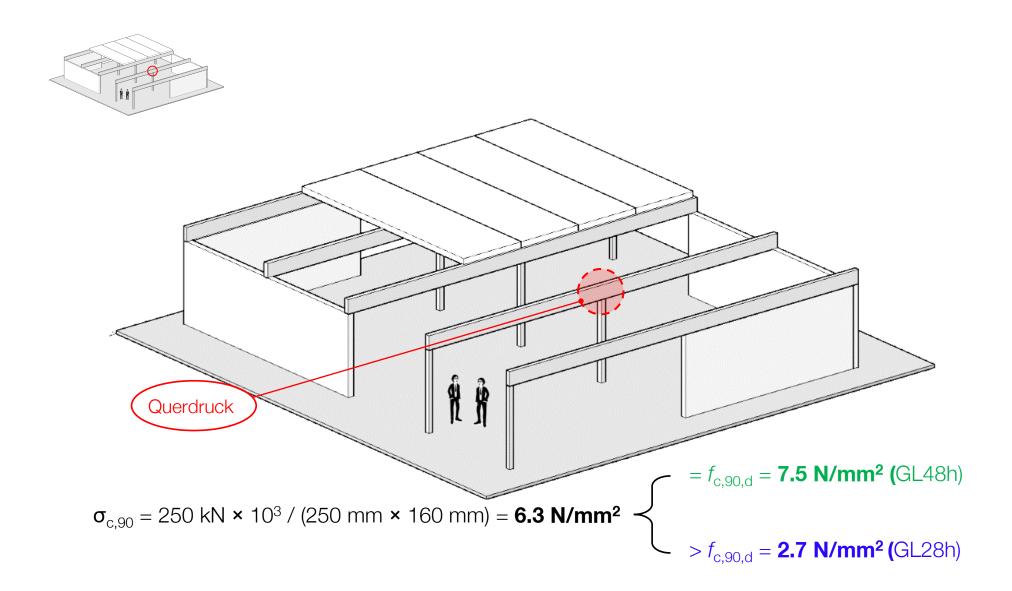
<u>8</u> Geschosse

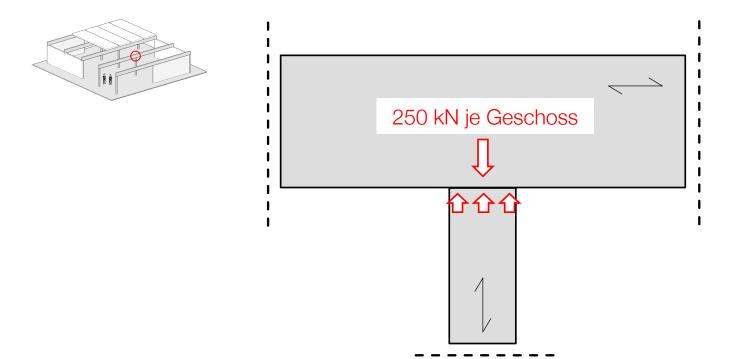
250 × 250 mm² (GL28h)

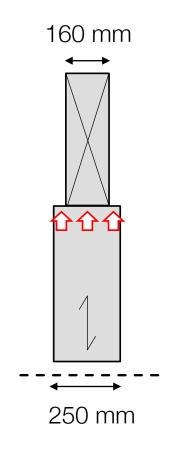
250 × 250 mm² (GL48h)

 $320 \times 320 \text{ mm}^2 \text{ (GL28h)} + 107\%$


Beispiel – Grosspeter Clime, Basel


Beispiel – Zwhatt, Regensdorf




Holzbauingenieur: B3

<u>Querdruck</u>

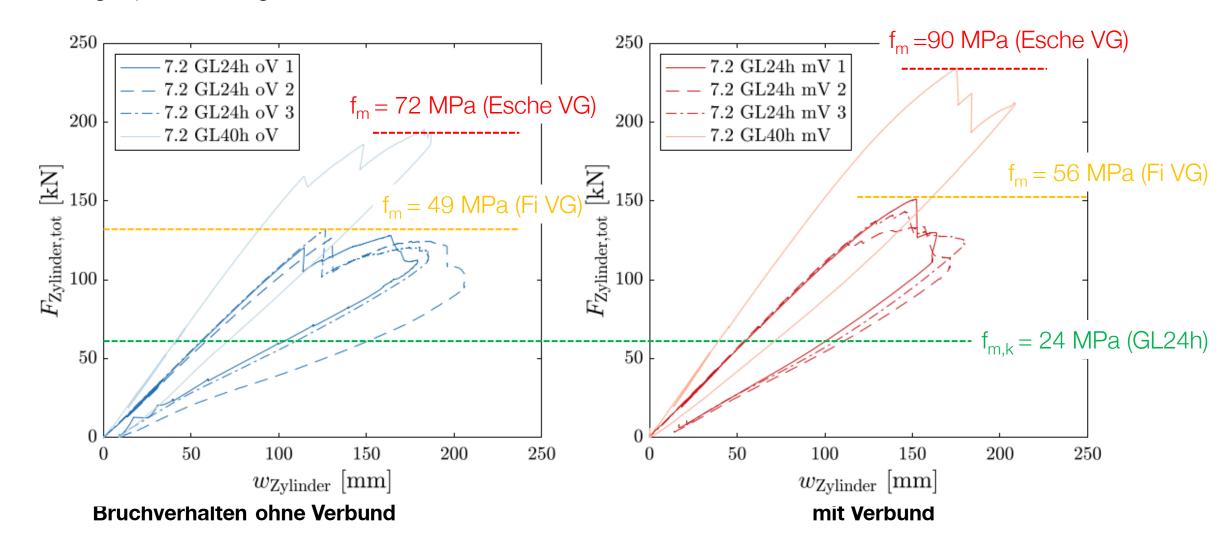
Querdruck

$$\sigma_{c,90} = 250 \text{ kN} \times 10^3 / (250 \text{ mm} \times 160 \text{ mm}) = 6.3 \text{ N/mm}^2$$
 $= f_{c,90,d} = 7.5 \text{ N/mm}^2 \text{ (GL48h)}$ $> f_{c,90,d} = 2.7 \text{ N/mm}^2 \text{ (GL28h)}$

250 mm

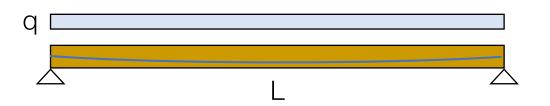
Weitere Bauteile / Strukturen

- Fachwerke
- Innovative Deckensysteme
- ...
- Vorgespannte Träger


Vorgespannte Träger

Öffnung zum Injizieren des Hohlraums Hüllrohr und Holz

Vorgespannte Träger


Einfeldträger

GZT / Biegespannungen

$$\sigma_m = \frac{M}{W} \to f_{m,d} \cdot h^2 \ge \frac{6 \cdot M}{b}$$

GZG / Durchbiegung

$$w = \frac{5}{384} \cdot \frac{q \cdot L^4}{EI} \to E_{0,mean} \cdot h^3 \ge X \cdot \frac{q \cdot L^3}{b}$$

	GZT		GL28h	BU-GL48h
Ī	t	N/mm2	18.7	32
	t _{m,d}	%	100	171
	h	mm	600	458
	ſΙ	%	100	76

BU-GL48h*
40.0
214
410
68

GZG		GL28h	BU-GL48h
_	N/mm2	12600	15400
∟ L _{0,mean}	%	100	122
h	mm	600	562
	%	100	94

BU-GL48h*
18480
147
419
70

...was benötigt es, um das vorhandene Potential zu heben?

Notwendig

- Hersteller
- Abgesicherte Produkteigenschaften / Materialkennwerte
- (Normierung)
- ...
- Kenntnis und Bereitschaft von Architektinnen und Ingenieurinnen mit Überzeugungskraft gegenüber den Bauherren

Die technischen Holzinformationen der Lignun

Lignatec

Verklebte Laubholzprodukte für den statischen Einsatz

Herzlichen Dank!