Data science for renewables: forecasting and asset management

Pierre-Jean Alet, CSEM Technology Briefing – Smart Energy Applied Solutions 11 Nov. 2020

Data science...

...for renewables?

DeepL	Traducteur	Linguee	Télécharger DeepL pour Windo	ows 🗠 Connexie	on
	Traduire des	documents			
Texte original en anglais (langue identifiée) 🗸			Traduire en allemand ∨	formel/informel 🗸	Glossaire
Our energy supply is currently facing X			Unsere Energieversorgung steht derzeit vor grundlegenden Veränderungen.		

>

fundamental changes. Sustainable and renewable energy sources such as wind and solar energy are replacing the widely unpopular and climate-damaging fossil fuels. As we move towards a more sustainable path, new systems are required to keep up with our energy needs. Unsere Energieversorgung steht derzeit vor grundlegenden Veränderungen. Nachhaltige und erneuerbare Energiequellen wie Wind- und Sonnenenergie ersetzen die weithin unbeliebten und klimaschädlichen fossilen Brennstoffe. Da wir uns auf einen nachhaltigeren Weg begeben, sind neue Systeme erforderlich, um mit unserem Energiebedarf Schritt zu halten.

① ≪ ↓

" CSem

Data from renewables

ur Linguee	Télécharger DeepL		
Algorithm	nics: transfe	er between application dom	ains
des documents		Encoder	
entifiée) 🗸	Traduire en alle r	$\tilde{v}_{t_0-n} \rightarrow \mathbf{k}$	
Atly facing ainable and such as wind ting the ate-damaging vards a more ems are ur energy	Unsere Ene vor grundle Nachhaltige Energieque Sonnenene unbeliebter fossilen Bre einen nach neue Syste unserem Er halten.	$ \begin{array}{c} $	

B. Schubnel et al., 'State-space models for building control: how deep should you go?', Journal of Building Performance Simulation, vol. 13, no. 6, pp. 707–719, Nov. 2020, doi: <u>10.1080/19401493.2020.1817149</u>.

 $\mathcal{Y} \setminus \mathcal{V}$

L

4

Use cases

- **Reducing** energy consumption
- Accommodating more renewables into the grid
- Getting more out of renewable generation **assets**

Challenges for integrating renewables in the grid

- Spatial distribution
- Random fluctuations of PV, wind
- Lower capacity factor

Data-driven solutions to integrate renewables

- Data-driven control for
 - Flexibility
 - Power quality
- Prerequisite: forecasting

Flexibility measures

Flexibility measures and their implications in the European Union in 2040; source: IEA (2017), Digitalisation and Energy, IEA, Paris https://www.iea.org/reports/digitalisation-and-energy

" CSem

Data-driven **forecasting**: intuition

PV system ≈ weather station

Spatial correlation Temporal correlation

Data quality **challenge**

- Required for machine learning: clean and uninterrupted data
- Real life: incomplete, noisy data
- Solution for reconstruction?

R. E. Carrillo, M. Leblanc, B. Schubnel, R. Langou, C. Topfel, and P.-J. Alet, 'High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution', Energies, vol. 13, no. 21, Art. no. 21, Nov. 2020, doi: <u>10.3390/en13215763</u>.

" CSem

(9

Data-driven forecasting: solution

- Graph machine learning (← social networks)
- High spatial and temporal resolution
- Beats numerical weather forecasts up to 5h ahead

CSem

Predicted

R. E. Carrillo, M. Leblanc, B. Schubnel, R. Langou, C. Topfel, and P.-J. Alet, 'High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution', Energies, vol. 13, no. 21, Art. no. 21, Nov. 2020, doi: 10.3390/en13215763.

Getting more from renewable generation assets

11

Asset management: impact

Worldwide cost savings from enhanced digitalisation in power plants and electricity networks over 2016-2040

Reduction in greenhouse gas emissions by 2040

Opex Capex

" CSem

IEA, Worldwide cost savings from enhanced digitalisation in power plants and electricity networks over 2016-2040, IEA, Paris https://www.iea.org/data-and-statistics/charts/worldwide-cost-savings-from-enhanced-digitalisation-in-power-plants-and-electricity-networks-over-2016-2040

Asset management: solution

- Machine learning on historical data
- Intelligent alarm triggering:
 - Encoding of expert knowledge
 - Latest algorithms from research
- Successful validation on 3 parks
- Solution in productive operations in Switzerland, Italy, France, Spain

Direct collaboration with **BKW** and its subsidiary **Proxima Solutions**

13

Early software prototype

«CSeM

Conclusions

- Distributed renewables create need and opportunities for data science
- High economic and environmental potential through:
 - Energy savings
 - Improved grid integration (forecasting, flexibility, control)
 - Asset management
- Transfer from pioneer domains
 + field expertise → rapid value creation

For your application: <u>Pierre-Jean.ALET@csem.ch</u>

+41 32 720 5251

R. E. Carrillo, M. Leblanc, B. Schubnel, R. Langou, C. Topfel, and P.-J. Alet, 'High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution', *Energies*, vol. 13, no. 21, Art. no. 21, Nov. 2020, doi: <u>10.3390/en13215763</u>.

B. Schubnel et al., 'State-space models for building control: how deep should you go?', Journal of Building Performance Simulation, vol. 13, no. 6, pp. 707–719, Nov. 2020, doi: 10.1080/19401493.2020.1817149.

14

B. Schubnel, R. E. Carrillo, P.-J. Alet, and A. Hutter, 'A Hybrid Learning Method for System Identification and Optimal Control', *IEEE Transactions on Neural Networks and Learning Systems*, 2020, doi: <u>10.1109/TNNLS.2020.3016906</u>.

P. Taddeo *et al.*, 'Management and Activation of Energy Flexibility at Building and Market Level: A Residential Case Study', *Energies*, vol. 13, no. 5, Art. no. 5, Jan. 2020, doi: <u>10.3390/en13051188</u>.