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Abstract

In Laser Powder Bed Fusion (LPBF) Additive Manufacturing process, it is important to

know the crucial factors affecting the production of robust, stable, and durable manufac-

turing parts. In order to find the best manufacturing parameters, thermal simulation of

Additive Manufactured parts has to be conducted. However, thermal simulation of the

laser powder-bed fusion (LPBF) additive manufacturing process is a challenging task. It

involves calculating a highly localized transient temperature field generated by a moving

laser with a typical radius of 30-100 micrometers and a velocity of 100-1000 mm/s, which

raises the temperature by around 2000− 3000◦C within a couple of microseconds. Reliable

Finite Element (FE) models of these processes require fine space and time discretization

in the order of micrometers and microseconds, respectively. On the other hand, LPBF

builds are typically in the range of centimeters, and their manufacturing takes hours. This

discrepancy between the scale of conventional LPBF simulations and actual parts makes

component-scale simulations inaccessible. Therefore, a balance between the accuracy and

the computational cost has to be made, and as a result, in the context of this thesis,

the main idea has been the use of Neural Networks as a surrogate model to act as an

alternative to FE simulations. The Physics Informed Neural Networks (PINNs) have

been implemented in order to solve the aforementioned problem without the need for

training data. Additionally, the effectiveness of the PINN algorithm has been evaluated in

the context of temperature dependent material properties by utilization of the Transfer

Learning Approach. All models created with the help of PINN have produced predictions

with relative errors / 20% in comparison to FE simulations.
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Chapter 1

Introduction

Additive Manufacturing (AM) is an emerging technology with the promise of taking an

important and prominent role in the future of design and construction thanks to its

advantages compared to conventional manufacturing methods. AM has rapidly accelerated

production and innovation in various industries including, aerospace, automotive, medical,

architecture, arts and design, food, and construction [Al Rashid et al., 2020]. Even though

AM has several benefits over traditional manufacturing processes, there are still many

challenges attributed to the AM before it can become the future of manufacturing. In this

thesis, special emphasis will be put on the AM of metals, and most importantly the crucial

factors affecting the production of robust, stable, and durable manufacturing parts. In the

following subsections, the metal AM process, and challenges associated with the simulation

of a specific metal Additive Manufacturing process called the Laser Powder Bed Fusion

(LPBF) process will be explained.

1.1 Metal Additive Manufacturing

Metallic parts have been commonly fabricated by convention subtractive (machining,

milling, etc.) means. However, with the invention of metal AM, a new method of

manufacturing metals by joining materials to make objects from 3D model data, usually

layer upon layer, as opposed to subtractive manufacturing methodologies, has been born

[Frazier, 2014, ISO/ASTM, 2013]. In terms of mechanical properties, metallic materials

fabricated by AM, have comparable static mechanical properties to the materials produced
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CHAPTER 1. INTRODUCTION

by traditional manufacturing techniques. Furthermore, the high cooling rates achieved

during the AM process reduce partitioning and favor reduced grain sizes. It is also

observed through manufacturing processes that AM provided 30 to 50% cost savings in

the production of certain structural components [Frazier, 2014]. There are several ways to

produce metal parts additively, such as Direct Energy Deposition, Binder Jetting, Material

Jetting, and LPBF; however, in this thesis, particular attention will be given to the LPBF

Additive Manufacturing Process.

Figure 1.1: Working Principle of LPBF-Process [ISO, 2016]

1) Powder feeding system

2) Powder material distributed in a powder bed laser

3) Laser

4) Tilted mirror with focus

5) Powder spreading device

6) Build platform

2



1.1. METAL ADDITIVE MANUFACTURING

In Figure 1.1, the working principle of the LPBF-Process is shown. As it can be seen

from Figure 1.1, in LPBF AM Process, the laser beam interacts with the powder particles

and by absorption of energy by powder particles, the temperature increases and particles

start melting locally. Afterward, the thermal conduction mechanism takes place, which

helps to distribute the heat through the deposited material. Finally, thermal conduction

transfers some of the heat from the system to the substrate and therefore it dissipates

some energy. Since there is a hot melt pool, the other thermal dissipation mechanism that

happens during this time is radiation. There are also some elements that evaporate and

leave the system. When they abandon the system, they also take some energy with them.

This is also another heat dissipation mechanism. In the LPBF-Process, there is a gas

atmosphere that also induces thermal convention to take some energy from the system and

bring it to the gas environment. The other important mechanism that has to be considered

is the phase transition, for example, latent heat of solidification or evaporation. These are

the mechanisms more relevant for the thermal part. Since during the LPBF-Process, the

liquid phase, molten metal, is created, there are some mechanisms important to describe

the motion of the melt pool such as gravity, buoyancy, also wetting and capillarity effect

resulting from the surface tension of the material, and finally the Marangoni effect. In

summary, AM alloys have a complex thermal history involving directional heat extraction,

and repeated melting and rapid solidification. Typically, AM manufactured alloys also

experience repeated solid state phase transformations. These factors introduce complexities

not typically found in conventional processes [Frazier, 2014].

There are several different approaches used for the melt pool simulation for Metal AM.

In the first approach, the Discrete element method (DEM) is employed for the creation

of powder bed, and Computational Fluid Dynamics (CFD) is used for following the melt

pool motion and the temperature distribution inside the deposited material, as well. In

the second method, the Rain Model is used to create the powder bed, and the Lattice

Boltzmann method is utilized for conducting the fluid dynamical calculations. Both of

these approaches can predict the different types of defect formation (porosity, lack of fusion,

and balling, etc.). These approaches can also give predictions in terms of temperature

distribution within the melt pool and at the area vicinity of the melt pool. However,

there are several challenges concerning these approaches. For these types of simulations,

3



CHAPTER 1. INTRODUCTION

extremely fine element size and extremely fine time increments have to be used. As a

result, these approaches result in a very high computational cost, and hence, only a very

small simulation domain can be considered for simulations. Due to this reason, these types

of simulations are not ideal for the calculation of the temperature profile within the whole

component. In reality, the temperature profile and temperature evolution during the AM

process are very important. Purely from the temperature profile, one might have some

indications about the risk of damage formation (porosity, lack of fusion, etc.). Thermal

profiles can also be used for the prediction of residual stress and distortion of AM material.

Another important aspect of the thermal profile is that if knowledge about the mechanical

performance of AM components is required, information about the microstructure is needed.

To create a predictive model for microstructure, the input data from the temperature profile

will be crucial. In summary, the main importance of thermal modeling is the generation of

the input data for other types of simulations. Thermal simulation of the laser powder-bed

fusion (LPBF) additive manufacturing process is a challenging task. It involves calculating

a highly localized transient temperature field generated by a moving laser with a typical

radius of 30-100 µm and a velocity of 100-1000 mm/s. Reliable finite element models of

these processes require fine space and time discretization in the order of micrometers and

microseconds, respectively. On the other hand, LPBF builds are typically in the range

of centimeters, and their manufacturing takes hours. This discrepancy between the scale

of conventional LPBF simulations and actual parts makes component-scale simulations

inaccessible. In Figure 1.4 the dominant physical phenomena during melting are illustrated

in a partially molten powder bed. The temperature distribution in the powder bed and on

the melt pool surface is indicated by color-coding (blue indicates cooler temperatures, and

red indicates warmer temperatures). The semitransparent melt pool surface enables the

visualization of melt pool dynamics by velocity arrows. The bottom of the melt pool is

visualized in white and the beam source in semitransparent red.

4



1.1. METAL ADDITIVE MANUFACTURING

Figure 1.2: Multi-Physics Phenomena in LPBF-Process [Panwisawas et al., 2020]

Figure 1.3: Multiscale Modeling Approach of the LPBF-Process [Li et al., 2015]

1.1.1 Challenges in Simulating Additive Manufacturing

1.1.2 Continuum Thermal Simulation

The main idea behind the Continuum Thermal Simulation is that the fluid part of the

problem is not taken into account, and as a result, the creation and the motion of a melt

pool are not considered. Therefore, all the fluid dynamical mechanisms are neglected,

and hence the computational cost of the problem decreases, and as a result, a larger

simulation domain can be simulated. As the name suggests, the main assumption behind

the Continuum Thermal Simulation is that the particles are considered as a continuum

medium. In other words, in order to simplify the problem the whole powder bed with

discrete powder particles is represented by a continuum medium, and a set of equivalent

5



CHAPTER 1. INTRODUCTION

Figure 1.4: The Dominant Physical Phenomena During Melting in the LPBF-Process
[Markl and Körner, 2016]

properties for this layer is considered. The whole layer is not only filled with material, but

also with gas. Specifically, in the parts of the powder bed, where there is porosity (filled

with gas), a lower thermal conductivity has to be considered since the thermal conductivity

of the powder bed is less than the thermal conductivity of the layer with solid material.

The second assumption is that the formation of the fluid phase inside the simulation

domain is not considered, and therefore the Continuum-based Thermal Modeling omits all

fluid-related mechanisms such as gravity, buoyancy, wetting, and capillarity, Marangoni

effect, and evaporation of the material.

Figure 1.5: Heat Transfer Mechanisms during the LPBF-Process [Yuan and Gu, 2015]

6



1.1. METAL ADDITIVE MANUFACTURING

Figure 1.5 gives an overview of the heat transfer mechanisms, which will be considered

in this thesis as a part of Continuum Thermal Modeling. As it is shown in Figure 1.5, the

powder layer is represented by a continuum medium. With this model, the interaction

of the beam source with the powder bed is still considered. The thermal conduction,

which helps to distribute the temperature within the part and also to the substrate is

also considered. The thermal radiation from the surface of the part is also taken into

account. Furthermore, when required (in the case of the gas-filled chamber) the thermal

convention is taken into consideration. It is also important to consider the latent heat of

melting/solidification, which has a significant effect on the temperature inside the melt

pool. However, when it comes to the latent heat of evaporation, it is not possible to

consider it in this type of calculation, since when the material evaporates, it will leave

the system, and in Continuum-based Thermal Modeling removal of any mass from the

system is not considered. Therefore, the evaporation mechanism is not taken into account

in this kind of calculation. Another important mechanism that helps improvement of the

temperature uniformity inside the melt pool, such as the movement of the melt pool due

to the Marangoni effect or buoyancy is not considered since in this type of calculation

the effect of melt pool motion on the thermal field inside the melt pool is not included.

However, researchers artificially increase the thermal conductivity of the liquid phase to

increase the heat transfer, and therefore they consider the effect of melt pool motion.

There are several studies that show that the way the energy source (heat source) is

defined will affect the predicted melt pool shape, melt pool size, temperature profile and

distributions, cooling rate, and also temperature gradients. It is known that temperature

gradients are important for the prediction of the residual stress and cooling rates are

essential for the prediction of the microstructure. Therefore, it can be concluded that the

establishment of an appropriate heat source model will eventually affect all the predictions

in the subsequent simulations. A 3-dimensional heat source formulation is required to

consider the penetration of the laser beam into the powder bed. As it can be seen in Figure

1.6, Zhang et al. have examined consideration of 8 different types of representation for

the energy distribution [Zhang et al., 2019], and concluded that semi-ellipsoid heat source

model, which was proposed firstly by Goldak et al. [Goldak et al., 1984], in the LPBF

simulation, shows good agreement with the experimental results. As it is shown in Figure

7



CHAPTER 1. INTRODUCTION

Figure 1.6: The schematic of the heat source models, (a) cylindrical shape; (b) semi-
spherical shape; (c) semi-ellipsoidal shape; (d) conical shape, (e) radiation transfer method;
(f) ray-tracing method; (g) linearly decaying method; (h) exponentially decaying method
[Zhang et al., 2019]

1.6 (c), often the front part of the ellipsoid is considered to be different from the rear part.

Thus the double ellipsoidal power density equation was proposed. The front part of the

ellipsoid can be expressed as,

qf (x, y, z) = ff
25/2βP

π3/2afbc
exp

[
−2
(
x2

af
2 + y2

b2 + z2

c2

)]
(1.1)

where β is the absorptivity of laser beam, P is the laser power (W). The rear part of the

ellipsoid can be written as follows,

qr(x, y, z) = fr
25/2βP

π3/2arbc
exp

[
−2
(
x2

ar
2 + y2

b2 + z2

c2

)]
(1.2)

where af and ar are the semi-axes of the front and rear ellipsoids. It should be noted that

ff + fr = 2.

It is very important to specify the governing equations that are of significant importance

8



1.1. METAL ADDITIVE MANUFACTURING

in this thesis.

∂E

∂t
+∇.(~uE) = ∇.(α∇E) + Q̇ (1.3)

∂E = Cp∂T (1.4)

α = k

ρCp
(1.5)

The Equation 1.3 indicates that the evolution of the energy state in the control volume

elements (∂E
∂t ) depends on the difference in the energy of the material which comes in

or goes away from the control volume (∇.(~uE) - the convective thermal energy), the

amount of energy which might be transferred through the boundaries of the control volume

(∇.(α∇E) - thermal energy diffusion) and also the energy generation within the control

volume elements (Q̇ - beam deposited energy). Since in this simulation framework, there

is no mass flow/transfer, the convective thermal energy can be neglected and as a result,

the formula becomes simpler. With the consideration of the Equation 1.4, which states

that the variation in the energy state of the system depends on the heat capacity (Cp)

and the variation of the temperature, and simple considering the definition of the thermal

conductivity (Equation 1.5, where k is the thermal conductivity and ρ is the density), and

with the assumption of constant thermal conductivity and heat capacity, the Equation 1.3

can be rewritten in the form of Equation as follows,

ρCp
∂T

∂t
= ∂

∂x

(
∂T

∂x

)
+ ∂

∂y

(
∂T

∂y

)
+ ∂

∂z

(
∂T

∂z

)
+ q̇ (1.6)

k
∂T

∂n
+ h(T − T0) + σε(T 4 − T 4

0 (1.7)

and the Fourier type Heat Conduction Equation (Equation 1.6) can be derived. This is

the differential equation that is solved during the Continuum-based Thermal calculation

and in order to solve this Partial Differential Equation (PDE) a set of initial and boundary

conditions are required. Often as an initial condition a uniform temperature distribution
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CHAPTER 1. INTRODUCTION

within the body is considered (T (x, y, z, 0) = T0 - T0 is the ambient temperature). As

a boundary condition, usually a constant temperature at the bottom of the substrate

(T (x, y, 0, t) = T0) might be considered. At the free surfaces the effect of heat radiation

(Equation 1.7, where n is the vector normal to the surface, h is the convective heat transfer

coefficient, σ is the Stefan-Boltzmann constant, ε is the emissivity) can be implemented.

It is also crucial to understand what specific considerations in terms of material

properties have to be taken for Continuum-based Thermal Simulation. For this type

of analysis, three material properties are needed, density, heat capacity, and thermal

conductivity. From the Equation 1.6, it can be seen that the first term is the material

density. Since in this type of simulation, a quite wide range of temperature values are

observed, and because of the existence of different material phases such as powder, solid, and

liquid, the evolution of the density as a function of temperature for different phases should

be known. In general, the density of a material decreases with the increasing temperature

values. In fact, an equation can be derived comprising the density, temperature, and

thermal expansion of the material. However, it is observed that when the transition from

solid to liquid phase occurs, a drastic change of the density (a sudden jump in the density

value) might be noticed as shown in Figure 1.7.

Figure 1.7: Temperature dependent density of 316L stainless steel [Piscopo et al., 2019]
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1.1. METAL ADDITIVE MANUFACTURING

Another important point is that the density of the powder material also should be

taken into account. It is possible to write down the density on powder layer based on the

Equation below,

φ = ρsolid − ρpowder

ρsolid
(1.8)

where φ represents the relative porosity, and often a relative porosity of 40-60% is

considered for powder layer.

Figure 1.8: Temperature dependent density values of different phases [Kim et al., 1975]

However, Gh Ghanbari et al. have shown that it might not be a good idea to consider

different densities for powder and solid material because of the fact that when the density of

the material is changed at a certain point, the mass conservation is violated in the system.

In other words, since the volume of the elements is constant, changing the density of the

material results in the changing of mass of the system. Another issue is that the thickness

of the powder layer is larger than the thickness of the deposited material. In this type of

calculation, the change of the thickness of the material cannot be considered, since the

thickness of the powder layer and the thickness of the deposited material are assumed to be

the same. Therefore, it is concluded that it might be more reasonable to consider the same

density values for powder and solid material. Furthermore, at the solidification/melting
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point, there is a jump in the density of the powder when the transition from powder to

liquid occurs, and this by itself causes some convergence issues due to the fact that all

numerical schemes work with a set of derivatives, and therefore they face difficulties for

consideration of a drastic change/jump in material properties.

Figure 1.9: Temperature dependent heat capacity of 316L steel [Piscopo et al., 2019]

Figure 1.10: Temperature dependent heat capacity of Ti-6Al-4V [Ranjan et al., 2020]

The second material property is the specific heat. It is the amount of heat that is

needed to give to a unit mass of the material in order to raise its temperature by one

degree Celsius. Its definition is shown in Equation 1.9. Again the evolution of specific heat
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at different temperature values has to be considered. Often, the specific heat increases

by temperature, as shown in Figure 1.9. There is a drastic change in the specific heat of

the material at the point where the transition from solid to liquid phase happens. The

underlying physics behind why the specific heat increases with the temperature and why

the specific heat is different for solid and liquid phases have to be investigated. Specific

heat is a measure of the ability of a material to store internal energy. Materials can store

energy in different ways, but mainly by increasing the kinetic energy of their molecules

through vibrational, rotational, and translational movements of their molecules. The

possibility of having these motions depends on the energy state of the material. It means

that at low-temperature values, when the internal energy of the material is low, there

are only a few degrees of freedom for molecules to move, and therefore there is only a

possibility of translation. By increasing the temperature, more degrees of freedom are

added, and as a result, molecules can also rotate. It means that materials have a higher

ability to absorb energy. By increasing the temperature, the degrees of freedom are also

increased, but at a certain point, all energy levels are populated, and therefore the heat

capacity remains constant. It is usually observed that the heat capacity of the liquid is not

sensitive to the temperature because of the fact that the liquid phase is the state where all

degrees of freedom are activated, and materials are not able to introduce new degrees of

freedom for absorption of energy. The other fact is that the specific heat varies for different

phases. The specific heat of the liquid phase differs from the solid material or even in

the solid material, there might be a different crystallographic structure and as a result, a

different capacity might be observed. For example, as it is shown in Figure 1.10, in the

case of Ti-6Al-4V, at around 900◦C Ti-6Al-4V switches from α phase to β phase, and since

the crystallographic structure is different, all properties including the specific heat of the

material are different. For the powder phase, a different specific value is not considered

since the specific heat is defined for the unit of mass, and it does not depend on the porosity

level. Therefore, the same specific heat value is considered for both solid and powder phases.

Cp = ∂E

∂t
(1.9)
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Figure 1.11: Temperature dependent thermal conductivity values of 316L stainless steel
[Piscopo et al., 2019]

The final material property that has to be considered is thermal conductivity. As it is

shown in Figure 1.11, from the variation of thermal conductivity over temperature for 316L

stainless steel, it can be seen that thermal conductivity increases, then decreases at the

melting point and increases again. In Figure 1.12, the evolution of thermal conductivity

of different materials have been shown, it can be observed from Figure 1.12 is that for

some materials thermal conductivity increases with temperature, on the other hand, for

other materials, the thermal conductivity decreases with temperature. Therefore, it can be

concluded that thermal conductivity has a more complex behavior than other material

properties. To understand the main reason behind the behavior of thermal conductivity,

first, the physics behind the mechanism for heat transfer in solid materials has to be

understood. There are two main mechanisms for heat transfer in solid materials. Heat in a

solid material is transferred either by lattice vibration or by the movement of free electrons.

For pure metals, the main heat transfer/heat conduction mechanism is the motion of

the free electrons, and therefore, it is expected that heat conductivity follows a very

similar behavior to that of electrical conductivity. With the increase in the temperature,

the vibrations of atoms inside the material increase, and as a result, atoms obstruct the

movement of free electrons, and therefore it is expected that by increasing temperature,

the electrical and thermal conductivity of the material decreases. However, in the case of

alloys or non-metals, a different phenomenon occurs. For alloys and non-metals, the lattice

vibrations and generated waves are responsible for the conduction of heat and therefore,
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Figure 1.12: Thermal conductivity of different materials [Kumar, 2019]

at higher temperature values, more intensified vibrations of atoms are expected and as

a result, higher thermal conductivity values are observed due to the increase in the heat

transfer rate. The reason behind the low thermal conductivity values observed in liquids

is that, for heat transfer by vibration waves, an ordered structure/crystalline structure is

needed; however, in the liquid phase, there is no ordered structure and therefore, the heat

transfer due to lattice vibrations is significantly reduced, and heat conductivity drops. In

the case of the powder bed, some sources propose to use a mixture rule to assume the

powder bed as the combination of metal particles and the air, and therefore considering

the 40-60% porosity level, it is assumed that the thermal conductivity of the powder phase
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is 40 to 60% of the solid phase. However, this relationship has never been confirmed by

the experimental observations. During experiments, it has been observed that powder

conductivity does not only depend on density but also powder size distribution and shape.

The general conclusion is that the conductivity of the powder phase is much less than

40-60%, and as a rule of thumb it is considered that the powder conductivity is only 1%

of the solid phase. This means that, at the melting temperature, there is a jump in the

thermal conductivity, the powder transfers into a liquid phase, and since the liquid phase

has a higher thermal conductivity, there will be a drastic change in the value of thermal

conductivity. As it is mentioned before, numerical methods experience difficulties in the

case of such drastic changes, but unfortunately, so far no solution has been proposed in

order to solve this issue.

Figure 1.13: Schematic representation of the employed phase transition rule for simulation
of the LPBF process [Gh Ghanbari et al., 2020]

It is mentioned before that the LPBF process includes the transformation of powder

particles to molten metal upon beam exposure and solidification of liquid metal upon

cooling. Therefore, any material point in the simulation domain can take one of the

three states of powder, liquid, or solid. In order to determine the phase in the simulation

domain, a set of user-defined subroutines is created and provided to the Finite Element
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(FE) packages. In these subroutines, as it is shown in Figure 1.13, initially, the temperature

values of each material point of which the respective phase wants to be known, is calculated.

If the temperature value of that material point at the current time is above the melting

temperature, then the material is in the liquid state. However, if the temperature is less

than the melting point, there exist two conditions. If the previous state of the material is

either powder or solid, the material keeps its state, but there might be the condition that

the material is in the liquid phase in the previous increment and at the current increment,

the temperature is below the melting temperature, then the formation of the solid phase

should be considered. The liquid phase from the previous time increment now switches to

the solid-state. Within this type of calculation, the evaporation and the formation of the

gas phase are neglected since the mass transfer is not included in the problem definition of

these simulations.

There are several challenges faced in the Thermal Simulation for Metal Additive

Manufacturing. The challenge is about the generation of the material data. For this

kind of calculation, the material properties over a wide range of temperature values for

powder, liquid, and solid materials are needed. Experimental measurement of material

properties is challenging and expensive, in particular for the liquid phase. Often, researchers

conduct a few experiments for the solid phase and then try to have an idea about material

properties in that range. For the temperature values, researchers either try to extrapolate,

use educated guesses or simply use theoretical values, and as a result, this approach has

several negative impacts on the accuracy of the predictions. The other problem that is

encountered in the Thermal Modelling of MAM is that simulations might face difficulties

in convergence. The reason is that, in the simulation domain, fast temperature evolutions

and high gradients in the temperature field at the area close to the melt pool are observed.

Furthermore, there are some physical phenomena in the system, such as thermal radiation,

which introduce non-linearity. It is known that FE simulations work perfectly for linear

problems; however, when the non-linearity of the problem increases, it will be more difficult

for simulations to converge. As an extreme situation, in the case of a jump in material

properties when the transition from powder to liquid state happens, the numerical scheme

will face challenges with this drastic change. The final challenge is that in the Thermal

Modelling of MAM, very small time increments and very fine element sizes have to be used
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in order to accommodate large temperature gradients and fast temperature evolutions.

As a result, the computational cost of the model is increased significantly. When the

computational cost of the LPBF process is examined, with the consideration of the melt

pool, and also heating/cooling rates, an element size of 10-20 µm and time increments

smaller than 1 ms have to be used. If a print of 2 cm cube is considered, it means that

109 elements and 108 time increments are needed. Performing such a simulation is not

possible for most computer systems. Therefore, there are several methods to reduce

the computational cost of the simulations. There exist various proposed approaches to

reduce the computational cost. Mainly five different approaches will be explained in the

following paragraphs. The first two approaches are very rough approximations, but they

can significantly reduce the computational cost. The next two are approaches that try to

refer to the problem regarding the requirement for very fine element sizes. Finally, the last

one tries to solve the problem related to the requirement of small-time increments, and

also fine elements.

The first approach is called Approximate Approaches or Lumped Heating. In this

approach, neither the in-plane movement of the laser beam nor the deposition of individual

layers is taken into account. Instead, what is done is that a metal layer is defined (a metal

layer can include one to several physical layers), and equivalent heat flux to the whole layer

is applied at the same time. This approach significantly reduces the computational cost of

the analysis, and one reason is that in this type of calculation, large temperature gradients

and fast temperature evolution rates are neglected; therefore, there is no need to use fine

elements or small time increments. However, for this reduced computational cost, there is

a pay-off. The result of this approach is not that reliable. In this type of calculation, the

peak temperature cannot be predicted, and the information about temperature gradient

and cooling/heating rates is lost. This method is used by research in particular for the

prediction of residual stress.

The second approach is Steady-state Eulerian Framework. Often, a Lagrangian system

is used for the simulation of the AM which means that the mesh is bonded to the material,

and the heat source moves through the simulation domain and deposits material. This

problem can be approached differently, and it can be assumed that there is a mesh which

material can flow through and there is a fixed location for the heat source. Fixing the
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location of the heat source makes it possible to use fine elements only at the area in

the vicinity of the heat source, and use much larger elements size for the rest of the

simulation domain. As a result, the number of degrees of freedom in the problem is reduced.

Furthermore, when this problem is solved, it is observed that a steady-state solution will

develop. The temperature within the system will not change anymore. Therefore, this

approach can significantly reduce the computational cost, both by decreasing the number

of degrees of freedom and also by replacing a transient solution with a steady-state solution.

However, in the case of the application of this method to the AM, some problems arise.

First of all, in AM, any strict steady-state solution does not develop. The temperature

profile at each location of the deposited material is different. The second limitation is that

this type of approach is applicable only to simple geometries; however, AM is often applied

to complex geometries, and therefore again this approach is not usable. In conclusion, this

approach is quite effective for the simulation of welding and direct energy deposition of

very simple geometries, but when it comes to processes such as LPBF this approach is not

applicable.

The third approach is Adaptive Remeshing. This approach is a well-known approach

for dealing with the problems regarding the development of high gradients at some parts

of the model. This approach has an adaptive algorithm that detects these high gradients

and starts adding more elements in these areas where high gradients are observed. This

algorithm has been implemented for the simulation of MAM, which means that there is

an area in the simulation domain with high mesh density moving with the heat source in

order to capture the large thermal gradients. Whenever the remeshing algorithm activates,

the results from the previous mesh have to be mapped to the newly generated mesh. The

remeshing and remapping processes are computationally expensive, and therefore, the

number of remeshing steps has to be optimized. This type of approach helps to decrease

the number of degrees of freedom in the system, fundamentally to reduce the number of

elements in the model; however, for this calculation, the small-time increments have still

to be used.

The next approach is Stepwise Element Coarsening. Here, the fine level of discretization

for the recently deposited layer is kept, but for the rest of the model, the size of elements

is increased, and that makes it possible to keep the number of degrees of freedom in the
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simulation domain rather low. This approach is not implemented into FE software packages

and therefore should be programmed by the user. The difference between this approach

and the one with Adaptive Remeshing is that in this approach the number of remeshing

steps is much less. Therefore, the cost of remapping the result between the two meshes

decreases.

Figure 1.14: Comparison of temperature profiles for fine and coarse mesh

The final approach is the Adaptive Local-global Approach which is under development

at Swiss Federal Laboratories for Materials Science and Technology (EMPA) by Pooriya

Gh Ghanbari as a part of an ongoing Ph.D. project [Gh Ghanbari et al., 2020]. The main

idea behind this approach is to reduce the computational cost with a minimum loss in

terms of accuracy. The idea is that even with a coarse mesh, an accurate solution can be

achieved at some area far from the melt pool. In Figure 1.14 the results of a fine mesh

solution and the result of a coarse mesh solution are shown [Gh Ghanbari et al., 2020]. It

can be seen that 100-200 µm away from the center of the melt pool, the result of two

calculations merges. Therefore, the main logic behind this approach is to run a coarse
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mesh analysis for the whole geometry of the model and correct it with a set of local fine

mesh solutions which will result in an accurate temperature distribution at the area close

to the melt pool. This type of analysis, similar to Adaptive Remeshing argues that a high

level of discretization is only required for the area close to the melt pool, and for the rest of

the simulation domain a much coarser discretization can be used. Therefore, the approach

breaks down the simulation into two scales, a global scale that uses large elements and

large time increments to simulate the whole geometry, and it is acknowledged that the

temperature predictions by the global scale at the vicinity of the melt pool are all wrong.

Then in the second scale, which is called local scale, fine elements and also small time

increments are utilized in order to recalculate the temperature profile at the vicinity of the

laser location, and there are many of these local calculations since they have to follow the

location of the laser. In the end, the result of the global calculation is combined with the

outcome of the numerous local calculations to a single database, and therefore the thermal

analysis, which is valid for the whole geometry is achieved. In this approach, there is a link

between the global solution and local simulations, and the link is that the local models

import the boundary temperatures from the global simulation. There is also a link between

different local simulations. For the local models, the result of the previously solved local

calculation is defined as the initial temperature for the new local calculation. Within the

local model, there is a non-uniform mesh distribution with high mesh density in the vicinity

of the beam location. This approach allows the user to create a final output database with

the desired mesh matrix and time increment density. The Multiscale Adaptive Local-global

Approach decreases the computational cost of the simulations while the introduced errors

are below 1%. However, it should still be noted that even with the Multiscale Adaptive

Local-global Approach the computational cost is still quite significant, and therefore in

order to reduce the computational cost different approaches are under development.

One of these approaches, which is investigated in this thesis is the use of Machine

Learning algorithms. As it is mentioned before, in the Multiscale Adaptive Local-global

Approach many local calculations have to be performed. All these local calculations

share the same mesh distribution, the same geometry, and the same amount of movement

of the laser beam, and they are only slightly different in terms of initial and boundary

conditions. Therefore, in reality, there is a correlation between the predicted temperature
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profile and the condition at the boundary of these local calculations. This enables the

use of data-driven Machine Learning algorithms in creating a surrogate model in order

to spot this correlation. Surrogate models statistically link input data to output data,

which are acquired through the complex system simulation. These models are commonly

utilized when the link between input and output data is not known, or when the rela-

tionship is extremely complex, and a simpler relationship with reasonable accuracy is

needed [Davis et al., 2017]. Typical surrogate models include Kriging [Zhou and Lu, 2020],

Support Vector Machines (SVM) [Pan and Dias, 2017], Radial Basis Functions (RBF)

[Zhou et al., 2019], low-rank tensor approximations [Konakli and Sudret, 2016], Polyno-

mial Chaos Expansion [Keller et al., 2020], [Smatsi et al., 2020], and Neural Networks

[Baumann et al., 2018]. In this thesis, mainly the Neural Networks, in particular, a novel

Network Network approach based on Physics-informed Neural Networks will be investigated.

1.2 Artificial Neural Network

Machine learning is a process of data analysis that enables machines such as computers

to learn from large data set without being explicitly programmed. Deep learning is a

sub-field of machine learning used for the implementation of Machine Learning algorithms

and mimics the human brain. Therefore, the purpose of deep learning is to make a machine

learn and work in a similar way that the human brain actually learns from experience

[Lecun et al., 2015, Haykin, 1999, Goodfellow et al., 2016].

Artificial Neural Network (ANN), which comprises neurons, and these neurons behave

in a similar way as neurons in the human brain. The neurons receive large numerical data,

which consists of input features, transmit this data to the other neurons, and at the end of

this process, the desired values are extracted. This process is also called as the learning

process or the training process. A simple Artificial Neural Network consists of mainly

three layers. Input layers are the layers, where the input features are provided. Hidden

layers, which are located between the input and output layers and construct the main body

of the ANN. They are the layers used to get the intended output by applying suitable

mathematical operations to the input data. Finally, the output layers are the layers where

the output data are obtained.
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Figure 1.15: The outline of the Artificial Neural Network [https://medium.com]

A schematic outline of the Artificial Neural Network, which presents the layer structure

described above, is shown in Figure 1.15. To understand the process performed in the

hidden layers, it is crucial to acknowledge the motivation behind the lines depicted in

Figure 1.15 and the importance of the weights. Since the ANN mimics the behavior of

the human brain, it is helpful to consider in a biological manner. In the human body,

when the input features (the real-time visual data) are acquired from the eye, they pass

through the neurons, and each neuron does some processing to generate an output that

the human can comprehend in a meaningful way. In a similar way, in the ANN, there are

some weights assigned, shown as W in Figure 1.15, to these input features, and there is

also a concept of activation function which plays a significantly important role. When the

weights are assigned, these weights will be passed to the hidden neurons, and then once it

is passed to the hidden neurons, there will be two types of operation that happen inside
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the hidden neurons. In the first operation, the summation of the products of the weights

and input features is performed. Once the summation is calculated, a parameter called

bias is added to the summation. The bias is used to adjust the output of this summation

and can be considered as a threshold that determines whether a neuron will produce a

meaningful result or not. In the second operation, the result of the final summation is

passed through the activation function, such that these neurons can be activated with

the help of higher weights and this activation function. This can again be explained in

a biological sense with an example that when a needle inserted into a human body, the

neurons in the corresponding insertion site are activated so that the humans can feel

the pain in that part of their body and can respond to that particular stimuli. In the

ANN, the activation functions have the same purpose, which is activating the neurons

with suitable mathematical operations. This particular operation that is with respect to

weights and activation functions are applied in each and every neuron. At the end of this

process, the output z of the neurons is passed to the output layer. After it is getting

passed to the output layer, there is also a weight assigned to that particular output layer,

and these particular weights will also get multiplied by z, and then an activation function

will be applied to z again. As an outcome of this learning process, also known as forward

propagation, the estimated parameters, which can be used for different applications, will

be extracted from the output layer.

There are various activation functions described in the machine learning literature. The

Sinusoidal, and Tanh, which are used in the context of this thesis, will be explained in this

section, and they are the most commonly used activation functions in neural networks. The

Tanh activation function, also known as Threshold activation function, which is sketched

in Figure 1.16, will transform the value of an input into an output value ranging between -1

and 1. On the other hand, the Sinusoidal activation function, shown in 1.17, is a function

that is based on sine function, and therefore, shows a periodic behavior.

It is important to note that the output of the ANN, the predicted parameters, need to

be compared with the actual or target parameters. To compare these parameters, a function

called Loss Function is employed. The Loss can be considered as an error, as in the case of the

numerical analysis. The Mean Squared Error is one of the most widely used Loss Functions,

which calculates the average (mean) of the squared difference between the actual parameters
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Figure 1.16: The figure of Tanh activation function and its derivative

and predicted parameters. It is expected that this Loss value has to be reduced in order

to achieve an accurate learning process. Decreasing the value of Loss can be attained by

updating the weights of the neurons with the help of optimizers. There are several optimizers,

which will be explained later in greater detail, used in the context of ANN. Some of them

are Gradient Descent, Stochastic Gradient Descent (SGD), Adam, Adagrad, AdaDelta, and

RMSProp [Kingma and Ba, 2015, Duchi et al., 2012, Zeiler, 2012, Ruder, 2016], and each

optimizer will try to reduce the Loss value. In order to reduce this value, a process called

Backpropagation is performed in which the weights of the neurons are updated. As seen in

Equation 1.10, the weights will get updated in such a way that the product of the learning

rate and the gradient of the Loss Function with respect to the corresponding weights that

are updated is subtracted from the previous value of the weights. The learning rate, which

is similar to the stepping parameter in the context of Newton iterations, takes a value

between 0 and 1 and determines the speed of the movement toward a global minimum of a

function. Once the weights are updated, the forward propagation will be conducted again,

unless, for some number of epochs, also known as iterations (one forward propagation plus

one backward propagation), this Loss value can be completely reduced with the help of

optimizers. The optimizers are used to find out the derivative of the Loss Function with
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Figure 1.17: The figure of Sinusoidal activation function and its derivative

respect to the weights.

winew = wiold
− η ∂L

∂wi
(1.10)

Since the ANN may contain several hidden layers and several neurons, the backpropa-

gation algorithm is performed by computing the gradient of the Loss Function with respect

to the specific weights by means of the chain rule, calculating the derivative of the Loss

Function with respect to the output values of each neuron and multiplying this with the

derivative of the output values with respect to the specified weights due to the fact that

output of each neuron depends on the weights assigned to that particular neuron.

It is also important to understand the concepts of Dropout and Regularization in

the scope of ANN. In the case of the neural network having multiple layers and several

neurons, there will be a huge number of weight parameters. These high amounts of weight

and bias parameters will cause an issue called overfitting, which means that the model

exactly predicts all the training data, however, it fails to predict the future data or the

test data that have not been observed yet. Overfitted models have a low bias (error in

the training data), but on the other hand, they have higher variance (error in the test

data), which means that the data are scattered largely across the test data. There are

two ways to solve this overfitting problem. One of them is using regularizers such as L1

and L2, which add a penalty term to the existing Loss Function to penalize for the large
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values of weights. L1 regularizer is used to penalize the sum of absolute values of the

weights, while L2 regularization is utilized in order to penalize the sum of squares of the

weights. The penalty term is a function of weights, and therefore, this penalty term will

be significantly large due to the large values of weights. As a consequence of the large

penalty term, the Loss Function will also become relatively large. Optimizers will try to

update the weights such that they can get smaller values, and thus Loss Function can be

minimized thanks to the reduced value of penalty term with the smaller values of weights.

The other method to solve the overfitting problem is implementing Dropout regularization

[Srivastava et al., 2014]. In this method, a dropout ratio between 0 and 1 is selected, which

helps to randomly drop (remove) some of the features from the input layer and some of the

neurons from the hidden layers based on this ratio. The Dropout regularization allows the

neural network to use the neurons more efficiently and not to rely on any specific neuron.

In this section, it is important to address the better ways to initialize weights and

the various techniques that researchers usually apply in the deep learning model with

respect to the weight initialization. Choosing the weights in a proper way will prevent the

neural network from encountering vanishing and exploding gradient problems. The first

thing that should be emphasized is that the weights should be selected as small values

in order not to cause an exploding gradient problem. Secondly, weights should not be

initialized to the same values. If the weights are set to the same values, the neurons will be

performing in the same way, which means that the neurons will be learning from different

features in a similar way, and this is not a desired feature from neurons in the ANN. As it

is mentioned, each neuron learns new information from input features. Therefore, there

should be enough difference between the weights such that the learning process to be

performed more efficiently in a way that neurons do not give the same output. There are

several ways to initialize the weights. In the first technique, the weights are initialized

using Uniform Distribution, as shown in Equation 1.11, where fanin represents the inputs

that are passed to a particular neuron. In this method, the weights are sampled from a

Uniform Distribution, which describes a probability distribution between a lower bound

and an upper bound in which all outcomes have an equal probability. Sampling from

Uniform Distribution is suitable for use in combination with the Sinusoidal and Tanh

activation functions. The second technique is Xavier/Glorot Distribution, which has two
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subclasses, known as Xavier Normal and Xavier Uniform. In Xavier Normal, also called

Glorot Uniform, the weights are sampled from a Normal Distribution with a zero mean and

a specific standard deviation, which is defined in Equation 1.12, where fanout indicates

the outputs from a particular neuron. In Xavier Uniform, also known as Glorot Uniform,

the weights are initialized from a Uniform Distribution within limits shown in Equation

1.13. Xavier/Glorot Distribution techniques are also suitable for use in combination with

the Sinusoidal and Tanh activation functions.

w ∼ Uniform
[ 1
−
√
fanin

,
1√
fanin

]
(1.11)

w ∼ N (0, σ) , σ =
√

2
fanin + fanout

(1.12)

w ∼ Uniform
[
−
√

6
fanin + fanout

,

√
6

fanin + fanout

]
(1.13)

As it is discussed before, in this section, the different types of optimizers will be explained

in greater detail. It is important to remember that the main purpose of the optimizers

is to update all the weights in such a way that the relative difference between the actual

and predicted parameters can be reduced. To begin with, the main goal of the Gradient

Descent optimizer is to find the global minimum of the function by iteratively moving in

the direction of the steepest slope with the help of a negative gradient of the function at

the present point. Unless the global minimum cannot be reached, the updating of the

weights will be performed by means of backpropagation. In the weight update formula,

which is given in Equation 1.10, the most important part is to find out the derivative of

the Loss Function with respect to specific weights. If all the data points of the training

data set are considered in order to find the derivative of the Loss Function with respect

to particular weights, the technique that will be used for convergence is called Gradient

Descent. If only a single data point at a time is considered, then the technique is known as

Stochastic Gradient Descent. If a random subset of the training data set is considered, the

technique is identified as Mini Batch Stochastic Gradient Descent, where batch specifies

the subset of the training data set. In the case of the training data sets having a large
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number of records, the computational cost of the Gradient Descent optimizer will be

significantly larger. Therefore, the purpose of Mini Batch Stochastic Gradient Descent is,

instead of using the whole data set, working on a subset of the training data set so that

computational cost can be reduced, and iterations can be much faster due to less data

being investigated. However, because of the stochastic nature of the Stochastic Gradient

Descent and Mini Batch Stochastic Gradient Descent Optimizer, the convergence will take

much more time compared to the Gradient Descent method. One of the most important

problems encountered in the optimization process is that because of the large number of

the weight parameters, hidden layers, and neurons, a non-convex Loss Function may be

observed. This Loss Function may have several local minimum and saddle points where the

derivative of the Loss Function is zero. Therefore, it is highly possible that optimizers may

capture the local minimum instead of converging to the global minimum, and this will cause

the update of the weights not being performed efficiently. To solve this problem, there are

different optimizers that are developed by researchers such as Stochastic Gradient Descent

with Momentum, Adam, Adagrad, AdaDelta, and RMSProp. Stochastic Gradient Descent

with Momentum is an enhanced version of Stochastic Gradient Descent, and it tries to

remove the noisy data encountered in Stochastic Gradient Descent caused by stochastic

nature of the optimizer [Qian, 1999]. In the Stochastic Gradient Descent with Momentum

optimizer, a momentum term which is derived using the Exponentially Weighted Moving

Average added into the Stochastic Gradient Descent algorithm. Exponentially Weighted

Moving Average is an approach used for assigning weights in a sequence in an exponentially

decreasing order. In summary, the purpose of Stochastic Gradient Descent with Momentum

is to reduce the noise in the data and increase the speed of movement in the direction of the

steepest slope in the optimization process. This momentum term also helps the optimizer

to reach the global minimum point of the Loss Function instead of capturing the local

minimum. Furthermore, in the Gradient Descent, Stochastic Gradient Descent, and Mini

Batch Stochastic Gradient Descent the learning rate is the same for all the neurons along

with all the hidden layers, and in all of these optimizers, the weights are getting updated

by using the same learning rate at every epoch. Therefore, the idea behind the Adagrad,

Adaptive Gradient Descent, optimizer is to use different learning rates for each neuron

along with the hidden layers at different epochs and to update the weights accordingly.
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Whenever there is a data set that will be solved using an ANN, in that data set, there

will be two types of features. The first type is called Dense, and the second feature is

identified as Sparse. In the Sparse feature, most of the values are zero. In the case of

the Dense feature, most of the values are non-zero. When a learning rate is initialized

at the beginning of the training process, and both Sparse and Dense features exist in

the training data set, by using this initial learning rate, it is not possible to update the

weights based on these Dense and Sparse features properly. For the Sparse feature, it is

required to have a different learning rate since most of the values here are zero. In the

case of the Dense feature, it is also required to have a different learning rate. Therefore,

the main concept behind the Adagrad optimizer is to use different learning rates with

respect to different features, different weights, and different epochs. Based on Adagrad

optimizer, the previous weight update formula, given in Equation 1.10, takes a new form,

as shown in Equation 1.14, where t species the t-th epoch, and the η′t indicates the adaptive

learning rate. According to the idea behind Adagrad optimizer, the η′t value should change

with respect to weights and different epochs. The η′t is defined in Equation 1.15, where ε

represents a small positive number in order to avoid division by zero. The αt, which is

described in Equation 1.16, will get high values as the iteration goes on since it depends

on the sum of the square of the Loss Function with respect to weights over the number of

epochs. Because αt is in the denominator in Equation 1.15, the η′t will take small values

due to high values of αt, which means that the learning rate will start to decrease as

the iterative process goes on. When the learning rate decreases, according to the weight

update formula given in Equation 1.14, the weights will decrease slowly, which signifies

that the convergence process will be performed very efficiently. Based on Sparse and Dense

features, the Adagrad optimizer is able to apply different learning rate parameters so

that the optimization process can reach the global minimum effectively. In conclusion,

when the Adagrad optimizer is implemented, the learning rate will change with respect to

different layers and different features. As the iteration continues, the learning rate will

keep changing. That is why it is called the Adaptive Gradient Descent optimizer. However,

one of the disadvantages of Adagrad optimizer is that it is possible that the αt can become

a very high number, and as a result, the learning rate can decrease significantly, indicating

that the convergence process can take an extremely long time. To fix the issue of the
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learning rate becoming significantly small, the AdaDelta and RMSProp optimizers are

introduced. In AdaDelta and RMSProp optimizers, in order to prevent the learning rate

from getting very small numbers, the αt is replaced with a parameter called Exponential

Weighted Average, E, which is given in Equation 1.17 and the idea behind it is very similar

to the Exponentially Weighted Moving Average described in Stochastic Gradient Descent

with Momentum optimizer. This Weighting function, with the help of parameter γ, which

is commonly chosen in the range 0.9-0.95, tries to restrict the square of the gradient of

the Loss Function taking extremely large values so that the learning rate cannot decrease

to significantly small values in each iteration. Finally, the Adam optimizer, which is one

of the most prevalent optimizers for deep learning, uses both the Momentum concept in

the Stochastic Gradient Descent with Momentum optimizer and the idea of the Adaptive

learning rate similar to AdaDelta and RMSProp.

wt = wt−1 − η′t
∂L

∂wt−1
(1.14)

η′t = η√
αt + ε

(1.15)

αt =
t∑

i=1

(
∂L

∂wi

)2
(1.16)

Et = γEt−1 + (1− γ)
(
∂L

∂wt

)2
(1.17)

1.3 Physics Informed Neural Networks (PINN)

In order to eliminate the need for training data, an alternative method has been found

to make the supervised ANN semi- or even unsupervised. Physics-informed Neural

Networks are algorithms that use the auto-differentiation feature of backpropagation

[Raissi et al., 2017], [Raissi et al., 2019]. During the gradient calculation in the backprop-

agation stage, one can calculate the gradients of the output with respect to the inputs by

using the chain rule. Therefore, at any step, one has access to the values of the derivative

from the network output with respect to the network input without extra computational
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effort, and this can be used to implement the PDE, the Heat Equation, that is of particular

interest in the context of this thesis. This algorithm can be used to reduce the required

training data near 0. Instead of using labeled training data, PINNs utilize collocation

points in order to calculate the PDE loss, boundary, and initial points to evaluate the

boundary and initial loss, respectively. In order to understand how the loss function has

been built up, in the following section, equations describing the loss function have been

shown using the example of the Heat Equation. An example of PINN in the case of Heat

Equation is shown in Figure 1.18. As it can be seen in Equation 1.18, the PDE loss has 3

components, the temperature gradient over time, the conduction term, and the heat source

which is evaluated all over the domain. The PDE loss is evaluated at the black points, also

known as collocation points, as shown in Figure 1.19 for the 1D case. In order to solve

the PDE, one also needs the boundary conditions and the initial condition. For Neumann

insulated or Dirichlet with a given temperature boundary conditions, the boundary loss

(Equation 1.19) is evaluated at the edge locations, grey dots, seen in Figure 1.19. Similarly,

the initial loss is evaluated at the red dots when the time is equal to 0. What is special

about PINN is that it is a meshless method, and therefore, one can easily include support

data from experiments or FE simulations that are not prebound by any predetermined

mesh. All these loss functions can be combined into one total loss function by giving it two

hyperparameters, one is called λP DE and the other one is called λV ariables. Here, it has

been decided to define two different hyperparameters, because it is important that in the

loss function all components have the same magnitude, in other words, some components

should not have higher importance than other components. Furthermore, the most crucial

point is that these hyperparameters can be tuned later using Ensemble Training in order

to find a balance between the PDE loss, and initial and boundary conditions.

LP DE = ρcp
dT

dt
− kd

2T

dx2 − k
d2T

dy2 − k
d2T

dz2 − q(x, y, z) (1.18)

LBoundary Neumann = dT (x ∈ b)
dx

LBoundary Dirichlet = (x ∈ b)− T
(1.19)
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Figure 1.18: An example of PINN in the case of Heat Equation

Figure 1.19: Initial, Collocation and Boundary Points [Alber et al., 2019]

LInitial = T (t = 0)− T0 (1.20)

LSupport = T (t, x)− Tdata(t, x) (1.21)

Total Loss = λP DELP DE + λV ariables[LBoundary + (LInitial + LSupport] (1.22)

The PINN algorithm that has been used in this thesis was based on the code developed

by [Mishra and Molinaro, 2021].
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Chapter 2

Simulation Setup, Results and

Discussion

As it is mentioned before, in this thesis, the main focus is using Neural Networks, mainly

Physics-informed Neural Networks, as a surrogate model for the thermal simulation of the

LPBF additive manufacturing process.

2.1 The Problem Statement

The original problem statement, as shown in Figure 2.1 contains a moving heat source

with multiple tracks and multiple layers in the 3D simulation domain. However, during

the course of this thesis, the original problem definition has changed, and the main focus

has been on the investigation of the case with a moving heat source with a single track

and a layer that includes temperature-dependent material properties. The powder phase

has been neglected for computational simplicity. The material that has been considered

in the simulation setup is Steel, and it has the density of 8220 kg
m3 , and the temperature

dependent conductivity and temperature dependent heat capacity as shown in Figure 2.2

and Figure 2.3, respectively.

The process parameters that have been used in the context of this thesis have been

summarized in the table below. It is important to note that in order to represent the Laser

Heat Source, the Goldak heat source model described in the previous chapter has been

used.
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Figure 2.1: The original problem statement

Process Parameters Value
Domain Size in x direction x ∈ [−1, 1.8]mm
Domain Size in y direction y ∈ [−1, 1]mm
Domain Size in z direction z ∈ [−1, 0.03]mm
Laser Source spherical Goldak
Goldak Radius σ 0.05mm
Penetration Depth in all directions 0.05mm
Laser Power 200W
Absorption β 50%
Starting Point x0 = 0
Laser Speed 1000 mm

s

Table 2.1: Process Parameters

2.2 Scaling of the PDE Components

Before starting using the PINN algorithm, it is important to scale the loss functions and

all the variables in the range of -1 to 1, since Neural Networks can train better when

variables in the domain are in the range of -1 to 1. The loss function has been scaled in

the domain -1 to 1 with respect to time and temperature since in the simulation domain

that is of particular interest in the context of this thesis, the temperature values go up

to 3000 degrees and time values go up to 0.0015s. For the spatial domain, no specific
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Figure 2.2: Temperature Dependent Conductivity

normalization has been considered since the spatial dimensions are already in the domain

that the network can handle. However, it is important to mention that, for some cases,

there is the benefit of also non-dimensionalizing the spatial domain. As it can be seen

from the following equations, at the end of non-dimensionalizing, Equation 2.9 has been

obtained. Here, the source term, the q, is the only component that is affected by the

Tmax normalization factor, the maximum value of the temperature. In order to make

the heat source have the same scale as the other components, the time gradient, and the

conduction term, and also to make the network easier to train, specific considerations had

to be taken in to find a suitable Tmax value, even though Tmax has been known from the

FE simulations.
∂E

∂t
+∇.(~uE) = ∇.(α∇E) + Q̇ (2.1)

The convective thermal energy term in the above equation can be neglected, and the

equation can be rewritten using the following definitions. It is important to mention that,

here, temperature-dependent conductivity and heat capacity has been utilized.

∂E = Cp∂T (2.2)

α = k

ρCp
(2.3)
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Figure 2.3: Temperature Dependent Heat Capacity

ρ
dT

dt
= d

dx

(
k

cp

dT

dx

)
+ d

dy

(
k

cp

dT

dy

)
+ d

dz

(
k

cp

dT

dz

)
+ q

ρ
dT

dt
− d

dx

(
k

cp

dT

dx

)
− d

dy

(
k

cp

dT

dy

)
− d

dz

(
k

cp

dT

dz

)
− q = 0

(2.4)

T ∈ (0, Tmax)

t ∈ (0, tmax)
(2.5)

The above equations have been non-dimensionalized using the relationships

T = TmaxT
′

t = tmaxt
′

(2.6)

where T’ representing the non-dimensional temperature and t’ representing the non-

dimensional time.
T ′ ∈ (0, 1)

t′ ∈ (0, 1)
(2.7)

T = TmaxT
′

t = tmaxt
′

(2.8)
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Tmax

tmax

dT ′

dt
− Tmax

ρ

[
d

dx

(
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cp

dT ′

dx

)
+ d

dy

(
k

cp

dT ′

dy

)
+ d

dz

(
k

cp

dT ′

dz

)]
− 1
ρ
q = 0

dT ′

dt
− tmax

ρ

[
d

dx

(
k

cp

dT ′

dx

)
+ d

dy

(
k

cp

dT ′

dy

)
+ d

dz

(
k

cp

dT ′

dz

)]
− tmax

ρTmax
q = 0

(2.9)

2.3 Test Cases

In order to understand what the PINN algorithm is capable of, first, several different test

cases have been investigated with an increasing level of complexity. This approach has

given a clear idea about how to approach the problem that is of the main focus in the

context of this thesis.

2.3.1 2D Case without Heat Source and without any temperature de-

pendent material properties

First, a very simple 2D rectangular block without Heat Source and without any temperature-

dependent material properties, meaning constant conductivity, heat capacity, and density,

has been established. As shown in Figure 2.4, Neumann boundary conditions have been

employed in three walls of the rectangular block, and Dirichlet boundary condition with

a constant temperature of 1◦C has been employed at the bottom wall. The temperature

range has been kept in the range of 0 to 1 in order to make this case even more simple. In

Figure 2.5, the thermal simulation result using both FE and PINN has been shown. As

mentioned before, the FE simulation result has been considered as the ground truth, and

the PINN result has been compared with the FE result, as shown in Figure 2.6. Here, a

pointwise error definition has been used. According to this definition, the temperature value

calculated using PINN for each node at FE has been compared with the temperature value

extracted from FE for that respective node. The L2 error and Relative error definitions can

be seen in Equations 2.10 and 2.11. These definitions have also been used in the following

cases. As it can be seen from Figure 2.6, where the results of the last time step have been

shown, the PINN has successfully predicted the temperature values with a relative error of

0.4%.
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Figure 2.4: 2D Case without Heat Source and without any temperature dependent material
properties

Figure 2.5: FE and PINN comparison for the 2D Case without Heat Source and without
any temperature dependent material properties

L2 Error =

√√√√ N∑
i=1

(Ti,P INN − Ti,F EM )2 (2.10)

Relative Error =

√∑N
i=1 (Ti,P INN − Ti,F EM )2√∑N

i=1 (Ti,F EM )2

N

(2.11)
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Figure 2.6: L2 and Relative Error for the 2D Case without Heat Source and without any
temperature dependent material properties

2.3.2 2D Case with a diffused Heat Source and constant material prop-

erties

Secondly, as shown in Figure 2.7, a slightly more complicated case where a diffused heat

source that increases the maximum temperature in the simulation domain up to 3500

degrees has been implemented at one of the walls of the 2D rectangular block. Similar to

the previous test case, constant material properties have been employed. All the walls have

been insulated, in other words, Neumann boundary conditions have been employed in all

the walls of the rectangular block. As it can be seen from Figures 2.8 and 2.9, the PINN

has managed to estimate the temperature values with a relative error of 0.8%.

Figure 2.7: 2D Case with a diffused Heat Source and constant material properties
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Figure 2.8: FE and PINN comparison at for the 2D Case with a diffused Heat Source and
constant material properties

Figure 2.9: L2 and Relative Error comparison for the 2D Case with a diffused Heat Source
and constant material properties

2.3.3 2D Case with time-dependent localized Heat Source and without

any temperature-dependent material properties

In the third test case, again no temperature dependent material properties have been used;

however, a localized Heat Source, similar to the laser source in the LPBF process, has been

implemented at the center of the simulation domain, as shown in Figure. As it can be seen

from Figure, the heat source has been active only for a very small part of the entire time do-

main (only 5% of the entire time domain). It is also important to note that the heat source

has a very sharp gradient at the beginning and it causes the temperature values to go up
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to 5500◦C in 5 milliseconds, as shown in the animation at the following link https://drive.

google.com/file/d/1G-n6rvRAUiNc69jgTXBblKYOlmAalS6r/view?usp=sharing. As soon

as the heat source gets deactivated, the cooling phase starts, and temperature values go

down to 100◦C. In Figures 2.11 and 2.12, the results of FE and PINN prediction at 0.005s

(at the time when maximum temperature occurs) can be observed. As it can be seen

from the Figures 2.11 and 2.12, the maximum temperature that PINN predicts and the

maximum temperature that FE shows is almost identical, but when the Relative Error

data has been examined in Figure 2.12, it can be observed that at a certain part of the

domain, the relative error goes up to 70%.

Figure 2.10: 2D Case with time-dependent localized Heat Source and without any
temperature-dependent material properties

Figure 2.11: FE and PINN comparison at 0.005s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties

When the results at the final time step (at 0.2s) have been investigated in Figures

2.13 and 2.14, it can be seen a similar trend as before in terms of the Relative Error.
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Figure 2.12: L2 and Relative Error comparison at 0.005s for the 2D Case with time-
dependent localized Heat Source and without any temperature-dependent material proper-
ties

In this case, it can additionally be observed from Figures 2.13 and 2.14 that the PINN

prediction is completely different than the FE result. The PINN shows issues predicting

the temperature profile shape and the maximum temperature value accurately. Moreover,

it even shows negative temperature results. Therefore, it can be concluded that the PINN

prediction is absolutely unrealistic in this scenario.

Figure 2.13: FE and PINN comparison at 0.2s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties

In order to solve the issue encountered in the context of localized heat sources, a

new collocation point sampling strategy has been developed. The algorithm of the new

collocation point distribution can be seen below. According to this algorithm, more

sampling points at the center of the domain have been accumulated in order to capture

the physics of the heat source more accurately. At the same time, these bulk of points

concentrated at the center of the domain has been spread out slowly when the heat source

gets deactivated since the heat source is only active for 5 milliseconds. As it be can be seen

in the Algorithm 1, the collocation points first have been generated in radial coordinates,

and then converted into cartesian coordinates. The animation of this new collocation
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Figure 2.14: L2 and Relative Error comparison at 0.2s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties

point distribution can be found at the following link https://drive.google.com/file/

d/1yDG7f_chOxxFMcemEqDEKsjWw3tC1k-2/view?usp=sharing.

Algorithm 1 Algorithm for Time Dependent (not Moving) Collocation Points in 2D
1: Nsamples = 10Nsamples

2: for k = 1→ Nsamples do
3: a = 1
4: Nrandom → sampled from Sobol sequence
5: radius[k, :] → Nrandom[0]
6: theta[k, :] → 2πNrandom[1]
7: time[k, :] → Nrandom[2]
8: radius[k, :] = radius[k, :]a(1−time[k,:])+0.5

9: x[k, :] =
√

2radius[k, :]cos(theta[k, :])
10: x[k, :] = x[k, :] + xlocationofthelaser

11: y[k, :] =
√

2radius[k, :]sin(theta[k, :])
12: y[k, :] = y[k, :] + ylocationofthelaser

13: Concatenate time, x and y
14: Delete coordinates <0 and >1

After the implementation of this new collocation point sampling strategy, the PINN has been

trained again in order to understand whether the new sampling strategy will result in highly

accurate temperature values. In Figures 2.15 and 2.16, it can be seen that at time point 0.005s the

Relative Error has been reduced from 70% to 8%. When the results at the end of time steps have

been examined, it be can be seen from the Figures 2.17 and 2.18 is that the Relative Error has

also been reduced, but it can be observed that the PINN still does not predict the temperature

profile shape accurately, even though it predicts the temperature range very precisely. In order to

solve this problem, Extended PINN, XPINNs, which is a domain decomposition approach in the

PINN framework, has been implemented [Jagtap and Karniadakis, 2020]. In this approach, one

can divide the space-time domain into several subdomains, and in each subdomain, a separate

neural network can be employed. Similar to PINN, the boundary and initial conditions for each

subdomain have to be implemented; however, in addition to the boundary and initial conditions,
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the interface conditions which are used to stitch the decomposed domains together have to be

employed. Since PINN has issues predicting the temperature profile at the final time step, XPINNs

have been implemented by using the decomposition of the time domain into several subdomains.

However, it has been observed that XPINNs had issues in the implementation of the Neumann

boundary conditions, and therefore due to time constraints, the study of XPINNs had to be left for

future research.

Figure 2.15: FE and PINN comparison at 0.005s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties after
new Collocation Point distribution

Figure 2.16: L2 and Relative Error comparison at 0.005s for the 2D Case with time-
dependent localized Heat Source and without any temperature-dependent material proper-
ties after new Collocation Point distribution

2.4 The Simplified Problem Statement and Transfer Learn-

ing Approach

In the previous test cases that have been shown, no temperature-dependent material properties

have been taken into account. When the temperature-dependent conductivity and heat capacity
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Figure 2.17: FE and PINN comparison at 0.2s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties after
new Collocation Point distribution

Figure 2.18: L2 and Relative Error comparison at 0.2s for the 2D Case with time-dependent
localized Heat Source and without any temperature-dependent material properties after
new Collocation Point distribution

have been implemented into the PINN algorithm; the network has struggled to train. As it can be

seen in Figure 2.2 and Figure 2.3, there are some kinks and very sharp gradients in the graphs of

conductivity and heat capacity lines, and usually, Neural Networks struggle to handle these kinds of

kinks and sharp gradients or jumps, and as a result, the PINN prediction was absolutely unrealistic.

Then in order to solve this issue, a step-by-step approach involving Transfer Learning has been

developed.

In this approach, first, the network has been trained without any temperature-dependent material

properties, so constant conductivity and heat capacity. At the end of the training, hyperparameter

optimization/ensemble training has been conducted in order to find the best hyperparameters, best

neural network architecture (number of layers, and neurons). Then the Transfer Learning approach

has been used, and the model has been transferred, or in other words, the weights and biases from

the network that has been trained with no temperature-dependent properties has been loaded to a

model with temperature-dependent conductivity and constant heat capacity. It is important to

mention that, in this approach, the exact temperature-dependent properties that has been showed

in Figure 2.2 and Figure 2.3, has not been used. Instead, approximate functions or smooth fit
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Figure 2.19: Transfer Learning Approach

that approximate these temperature-dependent properties have been used in order to avoid kinks

and sharp gradients. As it can be seen from Figure 2.2, a Tanh function has been used in order

to approximate the original conductivity function. Similarly, as shown in Figure 2.3, for the heat

capacity, a Gaussian fit has been used in order to approximate the original heat capacity function.

After the training of the second model has been done, the weights and biases of this network have

been transferred to the network with temperature-dependent conductivity and heat capacity. The

entire process used in this approach has been summarized in Figure 2.19. The one disadvantage of

this approach is that the Ensemble Training in order to find the best Neural Network architecture

in the 2nd and 3rd model cannot be used, because the weights and biases from the 1st model have

been loaded to the 2nd model, and as a result same number of layers and neurons have to be used.

However, one can still do Ensemble Training, but there are only very few hyperparameters that can

be tuned, such as the lambda values that have been shown in Equation 1.22.

There has been another approach that has been used when the temperature dependent material

properties were utilized, which did not yield any meaningful results. According to this approach,

two different Neural Networks, as it can be seen in this Figure 2.22, one for conductivity, and one

for heat capacity, have been used in order to find a smooth fit to the conductivity and heat capacity

lines, in other words in order to smoothen the kinks and sharp gradients. The output of these two

networks has been supplied into the original PINN algorithm. However, this approach did not work

out. The reason behind the failure of this approach might be the complexity of using two Neural

Networks, which depend on the outcome of the PINN algorithm.

The results of the first step (when no temperature material properties have been used) of the

Transfer Learning approach at 5.5 milliseconds in Figures 2.23 and 2.24 have been shown. It can

be seen from the Figures that a high accuracy has been achieved. Similarly, at 0.2s, as shown in
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Figure 2.20: Smoothened Conductivity Function

Figures 2.25 and 2.26, low Relative Error-values have been observed.

When the results at the time when the maximum temperature values occur have been looked

upon for the 2nd step of the Transfer Learning Approach, it can be concluded from Figures 2.27

and 2.28 that even though PINN has managed to predict the maximum temperature values quite

accurately; at a certain part of the domain, there has been a relative error of 50%; however, when

the L2 error Figure have been examined, it can be realized that the maximum discrepancy between

the FE and PINN is only 30 degrees. Therefore, for these temperature values, it can be said that a

30-degree difference is acceptable. As it is mentioned before, Transfer Learning does not allow the

utilization of Ensemble Training in order to find the best number of layers and neurons for the

Neural Network, and therefore improving the accuracy of the results is a challenging task. As it

can be seen from Figures 2.29 and 2.30, at the final time step a similar trend as before has been

observed; however, in this case, the relative error is much lower, around 20%, and the maximum L2

error is 11 degrees. Therefore, again it can be concluded that the result is acceptable. Here, even

though PINN has predicted the maximum temperature values with a decent accuracy, it can be

observed that PINN has again struggled to predict the temperature profile shape at the final time

step as before.

When the results of the 3rd step at the time when maximum temperature occurs have been

checked from Figures 2.31 and 2.32, it can be realized that there is a similar trend as before and

PINN has accurately predicted the maximum temperature; however, the relative error is again

around 50% at a certain of the domain. Since the maximum L2 error is also around 30-degrees,

here it can also be concluded that the PINN prediction is reasonable. As it can be seen from

Figures 2.33 and 2.34, at the final time step, similar results as in the case of the 2nd step have been
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Figure 2.21: Smoothened Heat Capacity Function

observed. Again, there is a maximum relative error of 20%, 11-degree L2 error, and similar to the

previous cases, PINN has struggled to predict the temperature profile shape accurately.

In order to improve the accuracy of the PINN algorithm several strategies have been developed.

It has been observed that at the beginning of the training process, the Neural Network has sometimes

produced negative Temperature predictions, and since the material properties are dependent on the

network outcome, these negative temperature values have caused wrong predictions in conductivity

and heat capacity. Therefore, in order to avoid the PINN predicting negative temperature values, two

additional new loss functions Lmax and Lmin have been implemented, as shown in Equations 2.12

and 2.13. These new loss functions have helped the Network not to predict any negative temperature

values and also values greater than the normalization temperature Tmax. The 2nd approach that

has been tried instead of implementing new functions into loss function was implementing a mask

function which avoids the prediction of temperature values below 0. Both approaches have helped

Neural Network to train better when temperature dependent material properties have been utilized.

Lmax = max(max(temperature)− 1, 0) (2.12)

Lmin = max(−min(temperature), 0) (2.13)

In order to improve the accuracy of the results, different sampling strategies for collocation

points have also been studied. In the first sampling strategy, Ole Müller, MSc student in Mechanical

Engineering at ETH Zürich, has used Moving Triangular Distribution that samples on the x-axis,
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Figure 2.22: Using two different Neural Networks for conductivity and heat capacity

Figure 2.23: FE and PINN comparison of the first step of the Transfer Learning approach
at 5.5 milliseconds

Static Normal Distribution on the y-axis and Shifted Normal Distribution on the z-axis, in order

to make sure that most of the collocations points are allocated at the point where the PDE loss

is evaluated, or in other words where the laser is acting on the material. He has shown that this

collocation point distribution strategy has brought down the error; however, with this approach,

there have been still some inconsistencies at the maximum temperature prediction where the laser

is acting. Then additional points directly in the geometric center of the laser, so-called central

bias points, have been added in order to make sure that the laser has been sampled at the highest

gradient points all over the time domain. He has shown that this approach brought down the error

dramatically [Mueller et al., 2021]. This sampling strategy has been summarized in Figure 2.35

In the context of this thesis, similar to the 2D case that has been shown in Algorithm 1, in

the 3D case, the random points have been generated in spherical coordinates, and then converted

into Cartesian coordinates. Here, an equation has been derived in order to sample more points

at the laser location, where the laser is acting on the material, and to follow the movement
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Figure 2.24: L2 and Relative Error comparison of the first step of the Transfer Learning
approach at 5.5 milliseconds

Figure 2.25: FE and PINN comparison of the first step of the Transfer Learning approach
at the end of the time step

of the laser consistently. The algorithm for the 3D case is shown in 2 and the animations of

these collocation points can be found at the following links https://drive.google.com/file/

d/1hBIq8Nc2nCh4tGae0mO5WZJSbst9Ky4k/view?usp=sharing and https://drive.google.com/

file/d/1rqORzYzQueaRD32gwa1c2g3VjQJeGymn/view?usp=sharing.

At the following links https://drive.google.com/file/d/1SLquPQTpSOQts9Dj_jKkYw4Z11E8dS88/

view?usp=sharing and https://drive.google.com/file/d/18SNuStaWHfqMRxWZu15P7OuLgigRFHX3/

view?usp=sharing, one can find the animations of PINN and FE predictions for the 3D Case with

temperature-dependent properties with a moving heat source (for the laser speed 1000 mm
s ). Here

it can be concluded that PINN has accurately predicted the maximum temperature value that has

been observed in the FE result.
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Figure 2.26: L2 and Relative Error comparison of the first step of the Transfer Learning
approach at the end of the time step

Figure 2.27: FE and PINN comparison of the second step of the Transfer Learning approach
at 5.5 milliseconds

Figure 2.28: L2 and Relative Error comparison of the second step of the Transfer Learning
approach at 5.5 milliseconds
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Figure 2.29: FE and PINN comparison of the second step of the Transfer Learning approach
at the end of the time step

Figure 2.30: L2 and Relative Error comparison of the second step of the Transfer Learning
approach at the end of the time step

Figure 2.31: FE and PINN comparison of the third step of the Transfer Learning approach
at 5.5 milliseconds
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Figure 2.32: L2 and Relative Error comparison of the third step of the Transfer Learning
approach at 5.5 milliseconds

Figure 2.33: FE and PINN comparison of the third step of the Transfer Learning approach
at the end of the time step

Figure 2.34: L2 and Relative Error comparison of the third step of the Transfer Learning
approach at the end of the time step
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Figure 2.35: Sampling strategy developed by Ole Müller

Algorithm 2 Algorithm for Collocation Points for 3D Moving Heat Source Case
1: Nsamples = 10Nsamples

2: for k = 1→ Nsamples do
3: a = 1
4: Nrandom → sampled from Sobol sequence
5: radius[k, :] → Nrandom[0]
6: theta[k, :] → 2πNrandom[1]
7: time[k, :] → Nrandom[2]
8: phi[k, :] → Nrandom[3]
9: radius[k, :] = radius[k, :]a(1−time[k,:])+0.5

10: x[k, :] =
√

2radius[k, :]cos(phi[k, :])cos(theta[k, :])
11: x[k, :] = x[k, :] + xlocationofthelaser

12: y[k, :] =
√

2radius[k, :]cos(phi[k, :])sin(theta[k, :])
13: y[k, :] = y[k, :] + ylocationofthelaser

14: z[k, :] =
√

2radius[k, :]sin(phi[k, :])
15: z[k, :] = z[k, :] + zlocationofthelaser

16: Concatenate time, x, y and z
17: Delete coordinates <0 and >1
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Conclusion and Outlook

In this thesis, the potential of the Physics Informed Neural Networks (PINNs) has been investigated.

This new algorithm uses the use auto-differentiation feature of the backpropagation stage of Artificial

Neural Networks (ANN) to solve the Partial Differential Equation (PDE) that is also evaluated

by FEM-solver. In the context of this thesis FE simulation results have been considered as the

ground truth, and results obtained by PINN have always been compared with the FE simulation

results in terms of Relative Error. The main focus during this study has been on the investigation

of the rectangular plate with a moving heat source with a single track and a layer that includes

temperature-dependent material properties (conductivity and heat capacity). It has been shown

that the PINN algorithm has given satisfactory predictions for simple cases with a Relative Error

below 1% without using any training data. However, when the temperature-dependent material

properties have been implemented, some problems have started to arise. Since material properties

depend on the output of the PINN, implementing temperature-dependent material properties has

been a challenging task. In other words, any wrong evaluations of temperature output during the

training process of PINN could iteratively affect the calculation of temperature-dependent properties.

Several strategies have been tested in order to find a good way to incorporate temperature-dependent

properties into the algorithm. In the first strategy, two different Artificial Neural Networks, one

for conductivity, and one for heat capacity have been used in order to calculate the functions of

these properties, and the output of these two networks has been supplied into the original PINN

algorithm. However, this approach did not yield any meaningful results. The second strategy,

which also constitutes the main approach that has been used during the course of this thesis, was

using Transfer Learning Approach to transfer the weights and biases from a simple model with

no temperature-dependent material properties to a more complicated model with temperature

dependent conductivity and heat capacity. This approach has helped PINN to produce results
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with a Relative Error / 20% in comparison to FE simulation. The main disadvantage of this

approach is that since the network architecture has been transferred from a simpler model to a

more complicated model, Transfer Learning does not allow the utilization of Ensemble Training

in order to change the Neural Network architecture, and therefore improving the accuracy of the

results is a challenging task. Multiple strategies have been tested in order to improve the accuracy

of the results. This includes implementing new loss functions into the PINN algorithm. However,

out of all these strategies, changing the sampling method had the most impact. Simply allocating

more points where the laser center is in order to calculate the high gradient points more precisely

has brought down the error. For future work, different sampling strategies should be examined

in order to find the best method to sample the high gradient points. Moreover, the influence of

appropriate approximate functions for temperature-dependent material properties on the training

should be investigated. As mentioned before, what is special about the PINN is that one can

also include support data from experiments or FEM simulations that are not prebound by any

predetermined mesh. In this thesis, the effect of FE support points has not been investigated, and

therefore, it could be important for future studies to evaluate the impact of FE support points to

understand the effect of support points in terms of accuracy. In this thesis, the powder pockets have

been neglected in order to simplify the problem statement. Therefore, the effect of powder pockets

(spatially changing material properties) should be studied in the future. Finally, the influence of

the number of collocation, initial, and boundary points on the training should be evaluated.
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