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Abstract

Stress-strain response measured from tensile-compressive loading of Hastelloy X at a

variety of temperatures are used to derive kinematic hardening model parameters, both

with and without isotropic hardening as well as creep parameters. Isotropic hardening

turn out to be of little consequence. These parameters are used to simulate an SLM

process in ABAQUS in order to derive residual stresses and the resulting deformations.

We were able to confirm the theory that describes the origin of residual stresses occur

in additive manufacturing, and pinpoint location of stress concentrations.



1. Aim of this thesis

Additive manufacturing is gaining importance in industry, especially in applications

demanding high-performance and low weight. Examples are turbine blades or medici-

nal implants. However, this process can only be a viable alternative if its properties

can be accurately predicted. As a result, accurate models predicting residual stresses

and deformation are needed. Because those of additively manufactured pieces are

different to other production processes, it needs its own set of testing.

The goal of this report is to adapt constitutive material models to the SLM-Process

and compare how strongly the choice of model influences the stresses and deformation

in the final part. We will use ABAQUS to both derive the model parameters and

simulate the SLM Process.
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2. Theory

2.1 Thermal origin of residual stresses

Selective laser melting (SLM) is an additive manufacturing process which uses a laser

to melt metal powder, causing it to bind to its surroundings. This process can cause

residual stresses to develop. The process by which this occurs is as follows:[1]

1. The heated metal will expand much more than the solid below it.

2. At high temperatures a material possesses a much lower yield point. Combined

with a lack of obstruction this results in plastic deformation of the top layer. The

ones below may experience compressive stresses.

3. As the metal cools it will shrink but is inhibited from doing so due to the substrate

below.

4. This causes compressive stress in the substrate and tensile stress in the newest

layer.

The effect is more pronounced, the larger the temperature gradient from layer to layer

is, as this increases the difference of plastic deformation.[2] Therefore, the choice of

constitutive model will predict different stresses and deformations. To what extent

they vary is the goal of this thesis.

2.2 Definitions and general concepts

The deformation of a material can be separated into three main components: the

elastic strain εe, the plastic strain εp, and the creep strain εcreep. Elastic strain occurs if

any load is applied and is best approximated using Hook’s Law.

In order to describe plastic strain, three things are required: First: the point

where the strain becomes plastic, which is described using the flow criterion f . [3]
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Figure 2.1: 2D representation of the Mises

yield criterion (blue: von Mises, black:

tresca)

Second: what is the stress-strain rela-

tion in the plastic region, which is de-

rived using a flow rule. Third: how does

the flow criterion change depending on

the amount of plastic strain, which is de-

scribed by selecting a hardening model.

The flow criterion f is equal to 0 if

the strain is plastic and smaller than 0

if it is elastic. One of the most common

description of the flow criterion is the

Mises criterion(see Figure 2.1) :

f =

√

√3
2

S : S −σy ,

where S is the deviatoric stress and σy

the initial yield stress. Definition of devi-

atoric stress: S = σ− 1
3(σ · I)I = σ−σH ydro.

Once the stress state reaches the yield curve, it will change shape and/or move

position. This is described using a hardening model, a selection of which is described

in section 2.3.

The associated flow rule (sometimes referred to as normality rule) defines the

plastic strain rate as:

d ε̇pl = dλ̇
d f
dσ

where dλ̇ is the plastic multiplier. Other flow rules have been postulated by Levy ,

Prantel and Reuss [4], but they are not considered here.

2.3 Constitutive Models

Constitutive models describe a relation between stress and strain. Of interest are

especially the plastic deformation models. What follows is an overview over a selection

of them and an explanation of some related basic concepts.

2.3.1 Elastic

Most materials exhibit rate-independent elastic(reversible) deformation at low de-

formation. In this region, Hook’s Law describes the stress-strain relation best. In a
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3-dimensional loading it is written as follows [3],

εe =
1+ v

E
[σ−

v
1+ v

(σ · I)I] (2.1)

Since there is no plastic deformation, we do not have to concern ourselves with any

flow condition or any hardening law. ABAQUS uses the same formula.

2.3.2 Elastic-Ideal-Plastic

The simplest plastic assumption is that once the yield point has been reached, the

material deforms plastically without any hardening. The flow condition can be de-

scribed by f =
q

3
2S : S −σy(p). Because σ0 remains constant the yield curve does

not change. Very few metals exhibit this behaviour.

2.3.3 Elastic-Isotropic-hardening-Plastic

Figure 2.2: Isotropic Hardening

When a material hardens isotopically its

yield surface expands proportionally in

all directions when yield stress is ex-

ceeded, as seen in Figure 2.2. [4] Math-

ematically, isotropic hardening is repre-

sented as flows [5],

Flow Condition : f =

√

√3
2

S : S −σy(p)

where p is the equivalent accumulated plastic strain. A purely isotropic model is

suited for monotonic loading but not for cyclical loadings, as it is unable to model the

Bauschinger effect.

2.3.4 Elastic-Kinematic-hardening-Plastic

Figure 2.3: Kinematic Hardening

A material that hardens kinematically has

its flow condition centred around a back-

stress tensor α. [4] The evolution of the

backstress tensor α̇ can therefore describe

the hardening using the associated flow

rule. This means that if the stress direc-

tion were to reverse, the yield strength

would be different than if it had not (see

Fig.2.3). This is commonly referred to as
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the Bauschinger effect, which is observed in most polycrystalline metals. Mathemati-

cally this Model can be described as follows:[6]

Flow Condition : f =

√

√3
2
(S −α) : (S −α)−σy(p)

σy = σ0 signifies pure kinematic hardening, while σy = σy(p) signifies isotropic/kine-

matic hardening

Chaboche model

The Chaboche model is widely accepted and has been implemented into many FEM

programs. [7] It too, assumes that the yield surface is centred around a backstress

tensor α. As a result, the yield surface is written as,

f =

√

√3
2
(S −α) : (S −α)−σy − R(p)

where R is the isotropic part. For pure kinematic hardening R= 0. [8]
Chaboche’s model allows for multiple backstress tensors. The evolution of the

backstress tensor is thus written as

α=
m
∑

i=1

αi

with

dαi =
2
3

Cidεpl − γiαi|dεpl |+
1
Ci

dCi

dT
αidT (2.2)

where Ci and γi are temperature dependent material parameters, and m is equal to

the number of backstress terms. In our case we will use 2.

A purely kinematic hardening model can explain certain phenomena like the

Bauschinger effect (the yield stress is lower if the loading is reversed).
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2.3.5 Creep and Relaxation

Figure 2.4: Creep Regions (picture taken from [9])

At elevated temperatures (T > 0.3Tm for metals), a material under stress can deform

plastically over time, despite being below the yield stress. This is referred to as creep

which “is characterized by a variety of microstructural rearrangements”. [9] Therefore,

if the stress is held at a constant value, the deformation will continue to increase, which

is referred to as creep. If the deformation is held constant, the stresses will decrease,

which is referred to as relaxation. The strain can be separated into three different

sections, referred to as creep regions, as pictured in Figure 2.4 [9]: In the primary

region, referred to as transient creep, the strain rate decreases monotonic and within a

short period of time. Mathematically, the strain in this region is commonly represented

with the Norton-Bailey Law, or sometimes refered to as power-law: ¯̇εcr = A · σ̄n tm.

[10]
In the secondary region, referred to as steady creep, the strain rate is constant. It

is also the most relevant for long-term descriptions of a part under stress, because

it covers the largest time frame. Mathematically it can be represented using the

Norton-Law: ε̄cr = A · σ̄n t.
In the tertiary region, referred to as accelerating creep, the strain rate increases

exponentially until failure, due to microscopic fractures within the grain boundaries.

[9]While models for this region exist, they are not relevant for this thesis and will not

be discussed.

For our simulation we will use the Norton-Law, despite the hold time being relatively

short. The reason for this is, that neither law is suitable for cyclical loading. [10] As

such, we need to commit to a simplified model if we want to model creep at all.
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3. Measurements

Figure 3.1: Measuring apparaturs (Picture

c© E. Hosseini)

Mechanical tests of Hastelloy X have

been performed by E. Hosseini at 25◦C ,

200◦C , 400◦C , 600◦C , 800◦C . The mea-

suring apparatus is pictured in figure

3.1. The specimen is subjected to a se-

ries of deformation patterns. They con-

sist of up to seven segments: four ramp

cycles and three hold cycles. During

the ramp, the specimen is deformed to

0.75% with a variety of deformation

rates (0.001s−1, 0.0002s−1 and 0.005s−1)

which is be followed by a hold time of

15min, as well as one series with a de-

formation rate of 0.001s−1 without hold

time.

Figure 3.2: left: stress-strain response at 25◦C without hold, center: same but with
elastic extrapolation, right: stress-strain response at 800◦C with hold

Looking at the results as pictures in Figure 3.2, we can observe some of the

previously elaborated phenomena: In Test 16, after 1 cycle the stress at 0.75% is slightly

higher than during the initial loading. This may indicate some elastic shakedown,

which implies small amout of isotropic hardening. The Bauschinger effect is clearly

visible: during the initial loading the specimen begins to yield at ≈ 150M Pa and
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during unloading it starts to yield at ≈ 275M Pa. The fact, the difference between the

peak stress and the yield stress during the first compression is approximately twice as

large as the initial yield stress indicates that little isotropic hardening is present. In

Figure 3.2 right we observe that relaxation at 800◦C is very prominent. This implies

that creep is significant. Finally we clearly observe non-linear hardening as evidenced

by a non-linear stress-strain relation in the plastic region.
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4. Modeling calibrations

Figure 4.1: Flowchart of the fitting process

In this section we aim to fit our models to the experimental data described above. The

whole process is illustrated in Figure 4.1: First we let MATLAB extract the time, strain,

temperature and the stress information from experimental results. In order to reduce

computational time, we fit the data to 100 logarithmically spread measurement points

for each segment. The stresses and strains are linearly interpolated, if data is missing

at this exact point in time.
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Next, we define a series of variables (x1, . . . , x i), which will be used to derive the

material properties as a function of temperature. How they relate is described below.

The time and strain information, as well as our guessed material properties are passed

on to Abaqus, which simulates the mechanical experiments of all test simultaneously.

The results are extracted by MATLAB, which calculates the error between the simulated

results and the experimental results. The optimisation toolbox will then systematically

alter the input and rerun the simulation. The algorithm stops when the error becomes

small enough. The full code is found in appendix A.

Chaboche

Elastic Deformation: Young’s Modulus: E = x1[1− x2 · exp(T/x3)]

Plastic Deformation: Tensile Stress: σy = x4[1− x5 · exp(T/x6)]

C1 = x7[1− x9 · exp(T/x10)]

C2 = x8[1− x9 · exp(T/x10)]

γ1 = x11[1− x13 · exp(T/x14)]

γ2 = x12[1− x13 · exp(T/x14)]

Q∞ = x19[1− x20 · exp(T/x21)]

b = x22[1− x23 · exp(T/x24)]

Creep: Power Law Multiplier: A= x15[x16/(T + 273.14)x17]

Stress exponent: n= x18

Time Order: m= 0
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Results:

Table 4.1: Fitted parameters of the Chaboche model with creep

E x1 = 2.554 · 106 x2 = 9.307 · 10−1 x3 = 5.868 · 101

σy x4 = 2.572 · 102 x5 = 2.032 · 10−2 x6 = 7.384 · 103

C x7 = 2.575 · 105 x9 = 5.190 · 10−1 x10 = 1.997 · 103

x8 = 1.952 · 105

γ x11 = 4.905 · 102 x13 = 5.313 · 10−2 x14 = 1.197 · 104

x12 = 1.289 · 103

A x15 = 2.355 · 101 x16 = 2.987 · 102 x17 = 1.566 · 10−1

n x18 = 6.370 · 100

sum of squared errors: 5.219 · 10−1

Table 4.2: Fitted parameters of the Chaboche model with isotropic hardening and
creep

E x1 = 2.004× 105 x2 = 9.954× 10−2 x3 = 1.145× 103

σy x4 = 2.040× 102 x5 = 6.557× 10−3 x6 = 2.572× 103

C x7 = 4.231× 105 x9 = 4.563× 10−1 x10 = 1.715× 103

x8 = 1.636× 104

γ x11 = 6.514× 102 x13 = 8.153× 10−3 x14 = 7.129× 103

x12 = 2.807× 102

Q∞ x19 = 5.837× 10−1 x20 = 4.123× 10−2 x21 = 1.75× 102

b x22 = 1.005× 100 x23 = 7.015× 10−3 x24 = 2.927× 107

A x15 = 2.609× 101 x16 = 3.705× 102 x17 = 1.789× 10−1

n x18 = 6.450× 100

sum of squared errors: 4.18× 10−1

Some observations from our results illustrated in Tables 4.1 and 4.2 and Figure

4.2: Q∞ is very small throughout the observed temperature, as seen by x19 = 5.837×
10−1M Pa. This indicates that isotropic hardening plays small to no influence. Moreover,

b, s0, g1 and g2 appear to be nearly independent of temperature as seen by x24� Tm,

x6 > Tm and x14 > Tm. Finally some of the material properties of chaboche and

chaboche with isotropic hardening appear to be significantly different. However, the

resulting stress-strain responses, as seen in Figure 4.3 and 4.4 change very little.
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Figure 4.2: Plot of the material parameters (blue: chaboche, red: chaboche with
isotropic hardening)
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Figure 4.3: The test results for chaboche without the isotropic hardening (Blue:
Experiment, Red: Model)
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Figure 4.4: The test results for chaboche with the isotropic hardening (Blue: Experi-
ment, Red: Model)
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5. AM Simulation

Using the previously determined model parameters, we will simulate the manufacturing

of a 2D Cantilever (Sketch in Figure 5.1). The reason we chose to simulate a 2D model

is to reduce calculation time. The parameters used are listed in Table 5.1

Figure 5.1: Dimensions of the simulated cantilever [µm]

Laser Power 700W
Scan Speed 0.7m/s
Layer Thickness 30µm
Laser Radius 50µm
Absorbtivity 0.2

Table 5.1: Settings for the additive
manufacturing process

Conductivity 25C◦ 9.1W m−1k−1

Conductivity 200C◦ 14.1W m−1k−1

Conductivity 1300C◦ 27.2W m−1k−1

Density 8220kgm−3

Thermal expansion 1.6× 10−5K−1

Specific Heat 25C◦ 486JK g−1K−1

Specific Heat 1300C◦ 858JK g−1K−1

Table 5.2: Material Properties of
Hastelloy X [11]

The layer size is 30µm, which is slightly lower, than the industrial standard of

40− 100µm. [12]We will simulate the additive manufacturing process in ABAQUS.

The reason for this choice is that ABAQUS allows the execution of user generated

subroutines. This in turn allows us to simulate a moving heatsource, which melts and

binds the powder, as well as program phase changes. It also allows us to model the

phase transitions from powder to liquid, and back to solid by using field variables (See

Fig 5.2). The full code is available in the appendix.
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Figure 5.2: Field variables distribution after printing layer 1 (red: inactive elements,
blue: active elements)

We can simulate the thermal component ahead of time and pass its results on to the

mechanical simulation. The relevant data of the thermal component has been printed

in Table 5.2. [11] The later adds the model parameters that we have determined

previously, as well as our custom subroutine as written in the appendix. The results

from these simulations will give us the residual stresses and distortion/deformation.
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6. Results and Discussion

6.1 Thermal Results

Figure 6.1: Temperature distribution while printing layer 10

Figure 6.1 shows how the temperatureat the overhang sections is much higher than

near the supports. Reason being, that they can not conduct heat as easily to the

substrate of the build. This means, that the temperature gradients near the corners is

much higher than within the beam or the supports.

6.2 Mechanical Results

Figure 6.2: residual stress distribution if pure elasticity is assumed

Figure 6.2 shows the results if both plasticity and creep for Hastelloy X is ignored. As

expected, no residual stresses are observed, as no plastic deformation can take place.
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Figure 6.3: Process by which residual stresses are generated (top: Temperature,
bottom: Stresses)

Thermal Stress: Figure 6.3 depicts the temperature and residual stress distriution

during printing of layer 1. Here we can confirm the process by which residual stresses

develop: On the right, while the laser passes over a specific section, the newest layers

are stress free, due to unconstrained plastic flow. The layers below, which are still solid,

experience compressive stresses, due to thermal expansion, while constrained. In the

centre, where the laser has already passed, those previous layers are now beginning

to compress, but are constrained by the layers at the bottom. This results in tensile

stresses near the top and compressive stresses below.

Figure 6.4: Residual stress distribution by concideration of Chaboche kinematic hard-
ening without creep

Figure 6.4 depicts the residual stresses for a chaboche kinematic hardening model,

while ignoring creep.

Location of Stress: We observe that the majority of stresses are in the top of our

beam of our cantilever, while the bottom of the beam contains little to no stresses.

This is in line to our expectations, as while printing, the bottom of the beam was

unconstrained. This means that there was no force to counter the shrinkage of the
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layer, resulting in the absence of residual stresses. Within the supports, there are few

to no stresses. Reasoning being, that the subsequent layers will reheat the bottom

ones, resulting in some relaxation of residual stress.

Magnidude of Stress: We observe that the stresses exceed 600 MPa, which is greater

than the maximum amount of stress that we measured from our specimens in Chapter

3. This means, that we are extrapolating from our hardening model. This might be a

good source of errors, unless the chosen model represent the material extremly well.

Alternativly one could do tests at higher stresses. No residual stresses are observed

within the supports, as they were reheated, allowing metal to deform and stresses to

be reduced.

Stress concentration Additionally, stress concentrations exist near where the sup-

port structures meet the beam and the substrate. During printing, these are the

locations, where the temperature gradient is also larger than in other parts, as the

heat flow is greatest there.

Figure 6.5: Residual stresses after removing the base plate

Deformation: Removing the base plate from the additively manufactured part re-

duces both the tensile and the compressive stresses at the top of the beam, and near

the supports as seen in Figure 6.5. This implies however that some deformation has

taken place. Looking at Figure 6.6 we observe that this is exactly what happened: The

beam warps upward.

Figure 6.6: total deformation after release
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Due to convergence issues, we are unable to present additional results and make

comparisons. I can, however, offer some prediction how the results would have looked

like: I assume that the inclusion of creep would result in lower residual stresses and

subsequently smaller deformations. I expect only small difference if the isotropic part

is added, since its contribution is minimal.

6.3 Summary and Outlook

The goal of this project is evaluating the sensitivity of predicted resudual streses within

SLM pats to the type of considered constitutive model.

• confirm the theory which describes the origin of residual stresses that occur in

additive manufacturing;

• pinpoint stress concentrations in an additively manufactured cantilever.

Convergance issues have precluded the comparison of different models, though.

A valuable extension for future research would be the simulation of a larger three-

dimensional part. This would allow for the manufacturing of a part and subsequent

validation of the model.
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A. Code

The main_optimisation function dies the following:

1. extracts the deformations/stresses from our experiments

2. generates a set of starting variables from which the Material Parameters will be

derived

3. optimises the Error_calculator_Hardening_KinematicOrIsotropic_Creep_No func-

tion

4. demands the plots for the final results

% This program optimises the parameters of a given constitutive model to be

% representative of a set of experimental data

clc

clear

close all

%% Importing experimental data from either excel or matlab database

if isfile(’Experiment_Results.mat’)

load ’Experiment_Results.mat’

else

for i=1:30

[num] = xlsread(’Experiment_Results.xlsx’,[’Test_’,num2str(i)]);

SegmentTime{i} = [num(1:101,1),num(1:101,5),num(1:101,9) ,num(1:101,13),

num(1:101,17),num(1:101,21),num(1:101,25)];

SegmenStrain{i} = [num(1:101,2),num(1:101,6),num(1:101,10),num(1:101,14),

num(1:101,18),num(1:101,22),num(1:101,26)];

SegmenTemp{i} = [num(1:101,3),num(1:101,7),num(1:101,11),num(1:101,15),

num(1:101,19),num(1:101,23),num(1:101,27)];

SegmenStress{i} = [num(1:101,4),num(1:101,8),num(1:101,12),num(1:101,16),

num(1:101,20),num(1:101,24),num(1:101,28)];

CompleteTest{i} = num(1:707,30:33);

SegmentField{i} = [num(1,34),num(1,35),num(1,36),num(1,37),num(1,38),
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num(1,39),num(1,40)]/1000;

SegmentTime{i} = SegmentTime{i} ./ SegmentField{i};

clear num

end

clear i

save(’Experiment_Results.mat’)

end

%% Writing sections of abaqus input file

delete MatlabAbaqusInputs/*.txt

for i=1:30

for j=1:7

dlmwrite([’MatlabAbaqusInputs/Strain_amp_test_’,num2str(i),’_Segment_’,

num2str(j),’.txt’],[SegmentTime{i}(:,j),SegmenStrain{i}(:,j),],

’precision’,’%10.10f’)

dlmwrite([’MatlabAbaqusInputs/Temp_amp_test_’,num2str(i),’_Segment_’,

num2str(j),’.txt’],[SegmentTime{i}(:,j),SegmenTemp{i}(:,j), ],

’precision’,’%10.10f’)

%alternative for non natural field variables

dlmwrite([’MatlabAbaqusInputs/Field_Test_’,num2str(i),’_Segment_’,

num2str(j),’.txt’],[’Test_’,num2str(i),’, ’,

num2str(SegmentField{i}(1,j))],’delimiter’,’’)

end

end

%% Start of optimization

% Material model parameters

Par0 =[1.7e+05,8.3e-02,4.0e+03,4.2e+02,3.8e-02,3.8e+02,8.0e+04,1.3e+04,2.3e-01,

6.9e+02,4.0e+02,4.6e+02,4.2e-02,3.6e+03,7.0e+03,2.6e+04,2e+00];

% initialising x vector

x0 = ones(size(Par0));

% fminsearch

fminsearch(@(x)Error_calculator_Hardening_KinematicOrIsotropic_Creep_No ...

(x,Par0,SegmenStress,CompleteTest,0),x0);

%% plotting

Error_calculator_Hardening_KinematicOrIsotropic_Creep_No ...

(x0,Par0,SegmenStress,CompleteTest,1)

The Error_calculator_Hardening_KinematicOrIsotropic_Creep_No does the follow-

ing:

1. Takes the initial set of variables and modifies them

2. Derives the material parameters from the modified set of parameters and writes
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them in .inp files

3. Calls ABAQUS and lets it run a simulation with the current set of material

parameters

4. extracts the Stress/Strain results and compares them with the experimental

results

5. returns an error back to main_optimisation.m

6. plots the final results

% Error_calculator_Hardening_KinematicOrIsotropic_Creep_No

% This program uses a set of model parameters and calculate the difference

% between the simulated and experimental stresses

function Error = Error_calculator_Hardening_KinematicOrIsotropic_Creep_No

(x,Par0,SegmenStress,CompleteTest,plotFLG)

Par=Par0.*abs(x);

dlmwrite(’Model_Parameter_Error.txt’,[0,Par],

’-append’,’precision’,’%10.10e’)

% Defining a temperature vector

T = [25; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000; 1300];

sz_T=size(T);

% Calculate E, s0, c,g parameter (neccesary to generate _parameters.inp files)

E = Par(1)* (1-Par(2) .*exp(T./Par(3)));

s0 = Par(4)* (1-Par(5) .*exp(T./Par(6)));

c1 = Par(7)* (1-Par(9) .*exp(T./Par(10)));

c2 = Par(8)* (1-Par(9) .*exp(T./Par(10)));

g1 = Par(11)*(1-Par(13).*exp(T./Par(14)));

g2 = Par(12)*(1-Par(13).*exp(T./Par(14)));

%Plastic rate parameters

Q = Par(19)*(1-Par(20).*exp(T./Par(21)));

b = Par(22)*(1-Par(23).*exp(T./Par(24)));

%Pass on the field variable

Field = zeros(3*sz_T(1,1),1);

for i=1:sz_T(1,1)

Field(i+sz_T(1,1))= 1;

Field(i+2*sz_T(1,1))= 1000;

end

Temp=[T;T;T];

25



A0 = [0*10.^Par(15)*exp(-(Par(16)./((T+273.14).^Par(17)))),10^-50);

max(1*10.^Par(15)*exp(-(Par(16)./((T+273.14).^Par(17)))),10^-50);

max(1000*10.^Par(15)*exp(-(Par(16)./((T+273.14).^Par(17)))),10^-50)];

m = [ones(size(T))*Par(18); ones(size(T))*Par(18); ones(size(T))*Par(18)];

n = [zeros(size(T)); zeros(size(T)); zeros(size(T))];

%% Writing material data for abaqus

delete MatlabAbaqusInputs/*.inp

dlmwrite(’MatlabAbaqusInputs\Elastic_parameters.inp’,

[E,0.34*ones(11,1),T],’precision’,’%10.10e’)

dlmwrite(’MatlabAbaqusInputs\Plastic_parameters.inp’,

[s0,c1,g1,c2,g2,T],’precision’,’%10.10e’)

dlmwrite(’MatlabAbaqusInputs\Creep_parameters.inp’,

[A0,m,n,Temp,Field],’precision’,’%10.10e’)

%% Running ABAQUS

delete ’abaqus.*’

delete ’Model_result.*’

rmdir(’Temp’, ’s’)

mkdir Temp

system(’abaqus job=Model_result input=Model.inp cpus=4 interactive ...

ask_delete=OFF scratch=Temp’);

system(’abaqus cae nogui=pythoncode.py’);

%% If abaqus run is not successful

if or(~isfile(’Model_result.rpt’),~isfile(’Model_result.sta’))

Error = 1e7;

return

end

if findstring<1

Error = 1e7;

return

end

%% Reading simulation results and sampling

data = importdata(’Model_result.rpt’,’ ’);

data = data.data;

[x2,al,idx] = unique(data(:,1),’stable’);

dataunique=data(al,:);

Sampling_1=(logspace(0,5,101)-1);

Sampling_1=Sampling_1/max(Sampling_1);

Sampling_2=sort(-Sampling_1+1);

Sampling_1=Sampling_1’*1000;
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Sampling_2=Sampling_2’*1000;

Sampling= [Sampling_2;1e3+Sampling_1;2e3+Sampling_2;3e3+Sampling_1;

4e3+Sampling_2;5e3+Sampling_1;6e3+Sampling_2];

data_resample(:,1)=Sampling;

for i=1:30

data_resample(:,1+i)=interp1(dataunique(:,1),dataunique(:,1+i), ...

data_resample(:,1));

end

%% Error calculation

Error_seg_1(1:30)=0;

Error_seg_2(1:30)=0;

Error_seg_3(1:30)=0;

Error_seg_4(1:30)=0;

Error_seg_5(1:30)=0;

Error_seg_6(1:30)=0;

Error_seg_7(1:30)=0;

for i=1:30

Error_seg_1(i) = sum((SegmenStress{i}(:,1) - ...

data_resample( 1:101,1+i)).^2)/(sum(SegmenStress{i}(:,1).^2));

Error_seg_2(i) = sum((SegmenStress{i}(:,2) - ...

data_resample(102:202,1+i)).^2)/(sum(SegmenStress{i}(:,2).^2));

Error_seg_3(i) = sum((SegmenStress{i}(:,3) - ...

data_resample(203:303,1+i)).^2)/(sum(SegmenStress{i}(:,3).^2));

Error_seg_4(i) = sum((SegmenStress{i}(:,4) - ...

data_resample(304:404,1+i)).^2)/(sum(SegmenStress{i}(:,4).^2));

Error_seg_5(i) = sum((SegmenStress{i}(:,5) - ...

data_resample(405:505,1+i)).^2)/(sum(SegmenStress{i}(:,5).^2));

Error_seg_6(i) = sum((SegmenStress{i}(:,6) - ...

data_resample(506:606,1+i)).^2)/(sum(SegmenStress{i}(:,6).^2));

Error_seg_7(i) = sum((SegmenStress{i}(:,7) - ...

data_resample(607:707,1+i)).^2)/(sum(SegmenStress{i}(:,7).^2));

end

%% Error summation

Error = sum(Error_seg_1)+sum(Error_seg_2)+sum(Error_seg_3)+ ...

sum(Error_seg_4)+sum(Error_seg_5)+sum(Error_seg_6)+ ...

sum(Error_seg_7);

dlmwrite(’Model_Parameter_Error.txt’[Error,sum(Error_seg_1), ...

sum(Error_seg_2),sum(Error_seg_3),sum(Error_seg_4), ...

sum(Error_seg_5),sum(Error_seg_6),sum(Error_seg_7)], ...
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’-append’,’precision’,’%10.10e’)

The subroutine contains two functions: DFLUX, which models the moving laser,

and USDFLD which models phase transitions, and activates elements.

C Subroutine for moving heat source modelling

SUBROUTINE DFLUX(FLUX,SOL,KSTEP,KINC,TIME,NOEL,NPT,COORDS,

1 JLTYP,TEMP,PRESS,SNAME)

INCLUDE ’ABA_PARAM.INC’

DIMENSION FLUX(2), TIME(2), COORDS(3)

CHARACTER*80 SNAME

C Variable declaration

REAL*8 x_coordinate,SCAN_SPEED,LASER_POWER,SUBST_HEIGHT,

1 LASER_RADIUS,ABSORPTIVITY,I0,x_laser_centre,

2 distance,LAYER_HEIGHT,PRINT_WIDTH,y_coordinate

C Rounding the coordinates

x_coordinate=IDNINT(COORDS(1)*1.D6)/1.D6

y_coordinate=IDNINT(COORDS(2)*1.D6)/1.D6

C Beam parameters

SCAN_SPEED = 700.D-3 ! Laser scan speed

LASER_POWER = 500.D-0 ! Laser power

LASER_RADIUS = 50.D-6 ! Laser radius

ABSORPTIVITY = 2.0D-1 ! Laser absorption coefficient

C Print parameters

PRINT_WIDTH = 100.D-6 ! Width of track

LAYER_HEIGHT = 30.0D-6 ! Layer thickness

C Substrate height

SUBST_HEIGHT = 100.0D-6 ! Hight of Substrate

C Initialy here is a vaccum above the substrate

IF ((y_coordinate .GT. SUBST_HEIGHT+ (KSTEP *LAYER_HEIGHT)) .OR.

1 (y_coordinate .LE. SUBST_HEIGHT+((KSTEP-1.D0)*LAYER_HEIGHT))

2 ) THEN

FLUX(1) = 0.D0

RETURN

END IF
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C Turn laser off if between support/center

IF ((y_coordinate .LE. 3.7D-4)

1 .AND.(((x_coordinate.GT. 2.5D-4).AND.(x_coordinate .LT. 8.5D-4))

2 .OR. ((x_coordinate .GT.12.5D-4).AND.(x_coordinate .LT.18.5D-4))

3 )) THEN

FLUX(1) = 0.D0

RETURN

END IF

C Maximum flux intensity

I0 = ABSORPTIVITY*LASER_POWER/(2.D0*LASER_RADIUS*

1 PRINT_WIDTH*LAYER_HEIGHT)

C Coordinate of laser centre

x_laser_centre = TIME(1) * SCAN_SPEED

C Distance of node from laser center

distance = ABS(x_coordinate-X_LASER_CENTRE)

C Energy deposition

IF (distance .LE. LASER_RADIUS) THEN

FLUX(1) = I0*(1.D0-distance/LASER_RADIUS)

END IF

RETURN

END

C ---------------------------------------------

C Subroutine for material property assignments and element activation

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,

1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,

2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)

INCLUDE ’ABA_PARAM.INC’

CHARACTER*80 CMNAME,ORNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)

DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)

C Variable declaration

REAL*8 x_coordinate,y_coordinate,temperature,LAYER_HEIGHT,T_MELT,

1 SUBST_HEIGHT

C Rounding the coordinates
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x_coordinate=IDNINT(COORD(1)*1.D6)/1.D6

y_coordinate=IDNINT(COORD(2)*1.D6)/1.D6

C Layer height

LAYER_HEIGHT = 30.0D-6

C Substrate height

SUBST_HEIGHT = 100.0D-6

C Melting temperature

T_MELT = 1300.0D0

C No powder inbetween the supports/cantilever

IF ((y_coordinate .GT. SUBST_HEIGHT).AND.(y_coordinate .LT.3.7D-4)

1 .AND.(((x_coordinate.GT. 2.5D-4).AND.(x_coordinate .LT. 8.5D-4))

2 .OR. ((x_coordinate .GT.12.5D-4).AND.(x_coordinate .LT.18.5D-4))

3 )) THEN

FIELD(2)=1.D0

ELSE IF (y_coordinate .GT. SUBST_HEIGHT+(LAYER_HEIGHT*KSTEP)) THEN

FIELD(2)=1.D0

ELSE

FIELD(2)=0.D0

END IF

IF ((KSTEP .EQ. 1.D0 .AND. KINC .EQ. 1.D0).AND.

1 (y_coordinate .LE. SUBST_HEIGHT)) THEN

!Initialization of field variables at start of steps

! Substrate is solid

STATEV(1)= 2.D0

ELSE IF ((KSTEP .EQ. 1.D0 .AND. KINC .EQ. 1.D0).AND.

1 (y_coordinate .GT. SUBST_HEIGHT)) THEN

! Substrate is solid

STATEV(1)= 1.D0

ELSE IF ((KINC .EQ. 1.0D0).AND.

1 (y_coordinate .LE. SUBST_HEIGHT+(LAYER_HEIGHT*KSTEP)) .AND.

2 (y_coordinate .GT. SUBST_HEIGHT+(LAYER_HEIGHT*(KSTEP-1.0D0)))

3 )THEN

!At the beginning of each step a layer of powder is deposed

STATEV(1)=1.0D0
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ELSE

!Reading temperature

CALL GETVRM (’TEMP ’,ARRAY ,JARRAY ,FLGRAY ,JRCD ,JMAC ,JMATYP,

1 MATLAYO , LACCFLA )

temperature = ARRAY (1)

!Powder/solid to liquid transformation

IF (temperature .GT. T_MELT) THEN

STATEV(1) = 3.D0

END IF

!Liquid to solid to transformation

IF (STATEV(1).EQ.3.D0 .AND. temperature .LT. T_MELT) THEN

STATEV(1) = 2.D0

END IF

END IF

C Save the material state for next increment use

FIELD(1)=STATEV(1)

C Release at the end of calculations

IF ((y_coordinate .LT. SUBST_HEIGHT).AND.(KSTEP .EQ. 15.D0)) THEN

FIELD(2)=TIME(1)+DTIME

END IF

RETURN

END
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