
EIDGENÖSSISCHE TECHNISCHE HOSCHSCHULE ZÜRICH ETHZ

Machine learning for multiscale thermal

simulation of powder-bed additive

manufacturing

by

Ole Müller

A semester thesis submitted in partial fulfillment for the

degree of Master of Science in Mechanical Engineering

Supervised by Prof. Dr. Eduardo Mazza and Dr. Ehsan Hosseini

in the

Experimental Continuum Mechanics Lab

Department of Mechanical and Process Engineering

in cooperation with

EMPA

High Temperature Integrity Group (HTIG)

October 2021

http://ethz.ch
olemuell@ethz.ch
https://ecm.ethz.ch/
https://mavt.ethz.ch/
https://www.empa.ch/web/s306/overview?inheritRedirect=true
https://www.empa.ch/web/s306/htig-group?inheritRedirect=true

Declaration of Authorship

I, OLE MÜLLER, declare that this thesis titled, ‘Machine learning for multiscale thermal

simulation of powder-bed additive manufacturing’ and the work presented in it are my

own. I confirm that:

◦ This work was done wholly while in candidature for a masters degree at ETH Zürich.

◦ Where I have consulted the published work of others, this is always clearly at-

tributed.

◦ Where I have quoted from the work of others, the source is always given.

Signed: Ole Müller

Place, Date: Kloten, 28.09.2021

i

What is the largest (rational) number n such that there are positive integers p, q, r such

that

1− 1

p
− 1

q
− 1

r
=

1

n

- The Answer to the ultimate Question of Life, the Universe, and Everything!

EIDGENÖSSISCHE TECHNISCHE HOSCHSCHULE ZÜRICH ETHZ

Abstract

High Temperature Integrity Group (HTIG)

Experimental Continuum Mechanics Lab

MSc in Mechanical Engineering

by Ole Müller

Fabrication of high quality parts through Laser Powder Bed Fusion (LPBF) requires ac-

curate optimization of the process conditions. A viable approach for finding these is

simulation, which additionally provides a detailed understanding. However, the compu-

tational cost is too high and poses a barrier for this approach. A multiscale thermal

simulation strategy is recently proposed by Ghanbari et al. which merges the outcomes at

small-millimeter-scale compuationally cheap Finite-Element (FE) simulations for analysis

at relatively large simulation domain for the LPBF process at a reduced cost. This thesis

evaluated the effectiveness of data driven methods to act as alternative to FE simulations

at the small-scale and further reduce the compuational cost of thermal analysis of large

LPBF parts. Two approaches are evaluated. Firstly a coupled principal component anal-

ysis (PCA) dimensionality reduction with a polynomial chaos expansion (PCE) model

trained on a 60 simulation dataset. As well as a unsupervised physics informed neural net

(PINN), which solves a simplified problem without the use of said dataset. Additionally

the capability of PINNs to create general models with variable material parameters is

evaluated. All evaluated surrogates produce steady state predictions with relative errors

below 5%.

http://ethz.ch
https://www.empa.ch/web/s306/htig-group?inheritRedirect=true
https://ecm.ethz.ch/
olemuell@ethz.ch

Acknowledgements

Firstly, I would like to thank Prof. Edoardo Mazza for giving me the opportunity to write

this thesis at the Experimental Continuum Mechanics Lab and allowing me to conclude

my Master at ETH Zurich with this work. I am very grateful to Dr. Ehsan Hosseini

and Pooriya Ghanbari for the weekly meetings, their supervision and help through these

months. Also i want to thank Prof. Siddharta Mishra and Roberto Molinaro, who agreed

to be part of the effort and were always available to answer questions about the code base

or the theory of physics informed neural networks. I want to express my gratitude to my

fiance who was patient with me working late into the night, speaking code for dinner, as

well as my family who was supportive through the ups and downs of the thesis.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1

1.1 Metal Additive Manufacturing . 1

1.1.1 Challenges in Simulating Additive Manufacturing 3

1.2 Adaptive Meshing . 4

1.3 Multi-scale modeling . 5

1.4 Surrogate Modeling . 6

1.4.1 Dimensionality Reduction . 7

1.4.1.1 PCA . 7

1.4.1.2 Kernel PCA (KPCA) . 8

1.4.2 Polynomial Chaos Expansion (PCE) 10

1.4.3 Neural Approach . 11

1.4.3.1 Perceptron . 11

1.4.3.2 Artificial Neural Networks (ANN) 12

1.4.3.3 Autoencoders . 14

1.4.3.4 Physics Informed Neural Networks (PINN) 14

2 Experimental setup 17

2.1 The Problem Statement . 17

2.2 The Dataset . 19

2.3 PCA+PCE setup . 19

2.4 PINN . 20

2.4.1 Benchmark Testing . 22

2.4.1.1 1D Heat equation with sinusoidal initial condition 22

2.4.1.2 2D Heat equation with Dirichlet and von-Neumann bound-
ary coonditions . 22

2.4.2 2D Heat equation with Static Gaussian heat source 24

2.4.3 Implementation of the problem statement 24

2.4.4 The simplified Problem statement 26

2.4.5 Solution Approaches . 28

2.4.5.1 Scaling of PDE components 28

v

Contents vi

2.4.5.2 Ensemble training . 28

2.4.5.3 Adding support points 29

2.4.5.4 Adaptive Sampling Strategy 29

2.4.6 Ensuring correct initial conditions 32

3 Results and Discussion 33

3.1 PCA + PCE . 33

3.2 PINN - Physics Informed Neural Networks 34

3.2.1 Parametric Model . 37

4 Conclusion and Outlook 41

5 Appendix: Code Base 44

Bibliography 44

List of Figures

1.1 Working Principle of LPBF process . 2

1.2 Modeling ranges of the LPBF process . 3

1.3 Multi-Physics in LPBF [Wikipedia] . 3

1.4 2D Simulation Mesh analysis . 5

1.5 Optimized Mesh . 5

1.6 Typical structure of surrogate modeling 6

1.7 The Taxonomy of Dimensionality Reduction Techniques 7

1.8 Intuitive representation of PCA . 8

1.9 Pitfalls of plain PCA vs. applying a Kernel 9

1.10 Typical structure of a perceptron . 11

1.11 Basic Structure of ANN . 12

1.12 Basic Structure of an autoencoder . 14

1.13 Basic Structure of PINN . 15

2.1 Modelled conductivity of HastelloyX . 17

2.2 Goldak Heat Source Representation (elliptic) 18

2.3 1D Prediction vs Exact Temperature . 22

2.4 Predicted and FEM Solution to the Boundary Problem 23

2.5 Prediction Error vs FEM . 23

2.6 Predicted and FEM Solution to the static source Problem 24

2.7 Prediction Error vs FEM . 24

2.8 Smoothed conductivity of HastelloyX . 25

2.9 Smoothed phase transition . 26

2.10 Failed PINN prediction of the complete problem 26

2.11 Failed PINN prediction of the simplified problem 28

2.12 Probability Density of a Triangular distribution 30

2.13 The adaptive sampling for capturing the Source 31

2.14 Comparison of initial predictions . 32

3.1 Limited Error of the 6 variable vs. full field approach 33

3.2 Maximum Error of the 6 variable vs. full field approach 34

3.3 Relative difference of the prediction vs. FEM 35

3.4 Maximum temperature difference PINN vs. FEM 36

3.5 Maximum predicted temperature PINN vs. FEM 36

3.6 Temperature Evolution Analysis of different Conductivities 38

3.7 Parametrized model performance vs. selected FEM results 39

vii

https://en.wikipedia.org/wiki/File:Schematic_of_major_defects_and_microstructural_phenomena_produced_by_LPBF.webp

Chapter 1

Introduction

Additive manufacturing (AM) technologies allow the creation of virtually any geometry

from metal, polymers and other materials. AM has been rapidly advancing into various

industrial sectors, including aerospace, automotive, medical, architecture, arts and design,

food, and construction [1]. However there are quite some challenges that prevail before

AM is becoming common place in our daily world. This thesis will focus on the AM

of metals. What is stopping the ubiquitous application of metal AM processes is the

influence of many different factors in making a part robust, stable and durable. In order

to understand these challenges, we first have to understand what entails the AM-process

for metals.

1.1 Metal Additive Manufacturing

Metals have been commonly formed by reshaping or subtractive means. Due to poor

mechanical properties after casting of metals, it is often just the first step of a longer

manufacturing process. With the invention of AM this changed. This new process offers

the potential to save between 30 and 50% of the cost of machining aerospace titanium

structural components [2]. Albeit they do require a short heat treatment for the reduction

of residual stresses due to thermal expansion and contraction during manufacturing, as

well as a short post processing to remove support structures. In this thesis we will focus

on Laser Powder Bed Fusion (LPBF). There are other ways to create full metal parts

additively such as Binder Jetting, Direct Energy Deposition and Material Jetting, these

will however not be part of this investigation. In the Figure 1.1 one can see the working

principle of the LPBF-Process:

1

Introduction 2

Figure 1.1:

Working Principle of LPBF process: [Wikipedia]

1) LASER is generated
2) Mirrors redirect the energy
3) Fresh powder reservoir
4) A piston pushes the new powder up
5) A spreader takes the powder and distributes it on the build platform
6) A piston attached to the build platform moves downwards the same amount 4)
moves down
7) Unmolten powder under the part geometry
8) Impact location of the Laser
——–
A) Scanning direction of the Laser
B) Molten and hardened metal
C) LASER-Beam
D) Melt-pool
E) Fresh powder layer
F) Unmolten powder from previous layers

The powder remaining at 7) can be recycled and reused for the manufacturing of other

parts [3]. This way AM reduces waste and has a smaller material requirement than man-

ufacturing the same part with subtractive means [4]. Currently, the best parameters for

single tracks are often determined through laborious experimental study prior to con-

ducting experiments to create high density parts. [5] However, this does not guarantee

the optimal process parameters for all part geometries, and needs to be repeated for new

materials. The obvious approach would be to simulate the manufacturing process using

different parameters and derive the best settings for a high quality part. Nevertheless,

figure 1.1 does not capture the multi-physics nature of the process. There are a multitude

of very complex multi-physical phenomena accompanying the manufacturing process [6].

In order to receive continuously good quality parts, these need to be understood and

controlled.

https://en.wikipedia.org/wiki/File:Schematic_of_major_defects_and_microstructural_phenomena_produced_by_LPBF.webp

Introduction 3

1.1.1 Challenges in Simulating Additive Manufacturing

The process of LPBF can be represented on three different levels of detail: Micro-, Meso-

and Macro-scale as can be seen in figure 1.2 from [7]

Figure 1.2: Modeling ranges of the LPBF process

The challenge with AM is that the relevant physical processes happen in the micro-scale

in the range of nm-µm, while the desired part is of macro-scale (cm-m) proportions. In

order to have consistently high quality parts, one has to understand the dynamics at the

finer levels.

Figure 1.3: Multi-Physics in LPBF [Wikipedia]

As can be seen on figure 1.3 there are a multitude of different physics phenomena in the

micro-scale that are affecting each other. Experiments and simulations aimed at under-

standing the micro-scale focus on resolving the interactions of individual powder particles

in domains with sizes of several µm. The limited investigated space allows for the inclu-

sion of many of the shown effects. This is too expensive to model in larger domains, but

provides valuable insights for simplifying the model at the meso-scale. Various computa-

tional methods have been used to estimate the micro-scale behavior: cellular automata

[8], phase-field modeling [9] and Monte Carlo simulations [10] to simulate the crystalline

microstructure lattice Boltzmann method [11], fluid and particle dynamics (CFD)[12],

[13] to model the multiphysics of meltpool dynamics in the micro-scale and thus help

https://en.wikipedia.org/wiki/File:Schematic_of_major_defects_and_microstructural_phenomena_produced_by_LPBF.webp

Introduction 4

modeling the process in the meso-scale. To include all of the micro-scale effects into one

meso-scale simulation, would be beyond the scope of this master thesis and is in fact

ongoing research [14][6][15]. Instead, we focus only on the thermal heat transfer within

the solid and simplify the other aspects accordingly. The thermal distribution over time

is the major influence on the material behavior. Because many material properties (such

as density, surface tension, heat conductivity, heat capacity, and thermal diffusivity) are

temperature dependent, temperature and its gradients are the most relevant quantities.

The quality of the final component is determined by the thermodynamic, hydrodynamic,

and mechanical impacts induced by these qualities. [7] They directly determine resid-

ual stresses within the part due to expansion and contraction [16], and influence crystal

growth [17]. An additional challenge is the required temporal resolution of the process.

When the laser reaches a given location, the temperature changes rapidly (40µs depend-

ing on the scanning speeds) from ambient (25°C-250°C) to peak temperature (3000°C). In

order to resolve these steep temperature gradients, time steps need to be very small. For

solving an FEM simulation with a 3µm uniform Cartesian mesh, required time steps are

pushed to the low ns range [18]. Thus, simulating the meso-scale requires a fine resolution

and small time steps for accurate results. Nonetheless, it cannot be used to simulate the

manufacturing of a part geometry. The entire manufacturing process often takes sev-

eral hours. Resolving an hour in the required time resolution would consume enormous

computational resources. However, to perform a parameter study, this would need to

be repeated for every set of parameters to be evaluated. Therefore, when performing a

sensitivity analysis or uncertainty quantification of a set of parameters the computational

cost of one evaluation has to be brought down.

1.2 Adaptive Meshing

As explained above, a very fine mesh resolution is required for correct results due to the

high gradients. However, as shown by in Figure 1.4 from [19] much of this fine mesh is

not required in the regions with low temperature gradients.

Introduction 5

Figure 1.4: 2D Simulation Mesh analysis

With proper care one can formulate a mesh design that is taking into account the tem-

perature gradients and is optimized for minimum element count. This has been done

in previous work and the results can be seen in Figure 1.5 from [20]. Here the LASER

moves along a very fine mesh (with 10µm resolution) for a few mm. All the while the low

gradients are resolved on larger mesh elements.

Figure 1.5: Optimized Mesh

1.3 Multi-scale modeling

In reality, the desired geometries are not only short straight lines. To simulate the manu-

facturing of any geometry, the same idea that was before applied to space, is now applied

to time. In regions where a fine temporal resolution is required, i.e. the actual melt pool

location, a fine ”local” simulation is evaluated. The ”global” simulation serves as a way

Introduction 6

to estimate the initial temperature distribution of the local model after it shifted its po-

sition along the laser path. The challenge for the solution of the local model is posed by

the changing boundary condition. It is not possible solve the local model only once and

then apply the result to every desired location of the global model. The metal powder

has a much lower heat conductivity than solid metal. Therefore, in regions close to an

edge, wall or hole, the temperature distribution is changing quite dramatically. One local

model can be evaluated on good computational hardware (Compute-Cluster EULER CPU

XeonGold5118 with 14 threads) in around 13h. Thus, for an entire geometry it would

still take an unfeasible amount of resources.

1.4 Surrogate Modeling

Surrogate models statistically tie input data to output data gathered by conducting a

complex system simulation. These models are most commonly used when the link be-

tween input and output data is unclear, or when the relationship is exceedingly complex

and a simpler relationship with reasonable accuracy is sought [21]. The computational

cost during use of the surrogate model should be lower than the conventional one. Typical

surrogate models include Kriging [22],Support Vector Machines (SVM) [23], Radial Basis

Functions(RBF) [24], low-rank tensor approximations[25], Polynomial Chaos Expansion

[26][20] and Neural Networks [27]. The usual procedure involves reducing the high di-

mensional input and output to a lower dimension using a dimensionality reduction. The

problem is then solved in a lower dimensional space and then reconstructed to the desired

output space, as can be seen in figure 1.6. This dramatically reduces computational cost

from several hours of evaluation to a second or less, given enough training data. If the

error after reconstruction is below the acceptance threshold, the surrogate model is a good

choice for reducing the computational cost.

input

Dimensionality

Reduction

reduced input reduced output

Dimensionality

Reconstruction

output
Model

Surrogate

Figure 1.6: Typical structure of surrogate modeling

Introduction 7

1.4.1 Dimensionality Reduction

In order to reduce the complexity of inputs it is important to understand the different

dimensions of said input. In this report we looked at two convex fully spectral reduc-

tions: PCA and kernel PCA, as well as a nonconvex neural network method. The entire

taxonomy of dimensionality reduction can be seen in figure 1.7 from [28].

Figure 1.7: The Taxonomy of Dimensionality Reduction Techniques

1.4.1.1 PCA

To perform a principal component analysis (PCA) one begins by centering the input data

around 0 and scaling it to unit variance.

Original Data: ~xn ∈ RD

mean: µ~x ∈ RD

variance: σ~x ∈ RD

scaling: xn = (~xn − µ~x)/σ~x

input X = {x0,x1,,xN}; E[xn] = 0; xn ∈ RD (1.1)

PCA is able to identify linear correlations in the data and implies statistical dependency.

E[xn
i xn

j] 6= 0 (1.2)

If there were no statistical dependency: E[xn
i xn

j] = E[xn
i]E[xn

j] = 0. Commonly PCA is

performed using the covariance method. For this the covariance matrix is calculated:

C =
1

N − 1
XTX; C ∈ RD×D (1.3)

Introduction 8

And then eigenvector composition is performed on the covariance matrix:

C = V ΛV −1; Λ = diag({λi|i ∈ {1, ..., D}}); V −1 = V T ∈ RD×D (1.4)

Then the resulting eigenvectors (columns of V) are sorted to decreasing order.

yn = V Txn; (W =̂ V T) (1.5)

Principal components of X are the eigenvalues of the covariance matrix C. To reduce the

dimensionality, or project to a lower dimensional space, one only keeps a given number

P < D of eigenvectors that correspond to the largest eigenvalues to create V̂ ∈ RDxP .

Using V̂ a new reduced dataset can be created:

zn = V̂ xn (1.6)

In order to get an intuitive understanding of what is happening during the PCA, it is

sensible to reduce the initial dimensions so something easy to understand. In figure

1.8, the initial input dimensions are in 2D being reduced to one principal component.

(Animation only plays in Adobe Acrobat reader)

Figure 1.8: Intuitive representation of PCA

1.4.1.2 Kernel PCA (KPCA)

PCA performs a matrix decomposition into eigenvectors, this is a linear transformation.

Any projection is always a linear combination of the original dimensions. There exist

several datasets (e.g. figure 1.9) where PCA struggles to capture the correct behavior, as

Introduction 9

they can only be captured by nonlinear combinations. The concept of KPCA is to apply

the PCA to an altered covariance matrix. Instead of using the matrix defined in eq. (1.3)

we apply a kernel. Many functions can be kernels [29], they need to be an inner product

in a suitable space and they must be symmetric:

∀x, x′ ∈ X : k(x, x′) = φ(x)Tφ(x′) = φ(x′)Tφ(x) = k(x′, x) (1.7)

Also their kernel (gram) matrix needs to be positive semidefinite:

K =


k(x1, x1) ... k(x1, xn)

...
...

k(xn, x1) ... k(xn, xn)

 (1.8)

This means

(i) ∀x ∈ Rn : xTKx ≤ 0 (1.9)

(ii) ∀ Eigenvalues λ(K) ≤ 0 (1.10)

The advantages are that many nonlinear features can be successfully reduced. However,

the result cannot be interpreted intuitively as PCA can, as the transformations are non-

linear. As can be seen in figure 1.9[©Sebastian Raschka]

Figure 1.9: Pitfalls of plain PCA vs. applying a Kernel

Additionally, a reconstruction to normal space is not guaranteed. It requires hyperparam-

eter tuning, selection of the adequate kernel and more computational complexity. This

can only be achieved with hyperparameter tuning which requires an extensive amount of

training data.

https://www.slideshare.net/SebastianRaschka/nextgen-talk-022015/47-Kernel_PCAPC1_linear_PCA_PC1

Introduction 10

1.4.2 Polynomial Chaos Expansion (PCE)

PCE is the actual surrogate model. It takes the reduced input and is a way to model pro-

cesses in terms of orthogonal polynomials. It can be thought of as PCA over an orthogonal

vector space of polynomials rather than reals. It allows handling of any distribution that

has a finite second moment, i.e. finite variance. The general form is:

Y =

∞∑
i=0

yiΦi(X) (1.11)

Where X is a random variable, and Φ is a polynomial with input variable ξ [30]. PCE

can create a model that approximates the behavior of the given distribution as long as its

second moment is finite and the polynomial Φi is orthogonal to the probability density

function of Xi ∈ R. If Xi comes from a Gaussian, then φi would have to be a Hermite

polynomial fulfilling as per definition.

〈Hi(X)Hj(X)〉 =

∫ ∞
−∞

Hi(X)Hj(X)e−
X2

2 dX (1.12)

Then PCE can represent any finite variance random variable Y as a series of Hermite

polynomials about a Gaussian random variable x

Y =
∞∑
i=0

yiHi(X) (1.13)

Every distribution of random variables has their orthogonal polynomials (i.e. uniform

distribution is orthogonal to Legendre polynomials; exponential distribution is orthogonal

to Laguerre polynomials). For real life application an infinite sum cannot be computed

so a truncation scheme has to be applied so that

Y =
∑
i∈S

yiΦi(X) (1.14)

with S being the set of considered multi-indices in the truncated expansion:

Sp = {i ∈ N : |i| ≤ p} (1.15)

and p the maximum degree of considered polynomials. In this work UQLab is used for any

PCE related analysis. The UQLab library [31] which is implemented for MATLAB has

different truncation schemes already implemented as well as the optimization required to

find the best coefficients. PCE chooses the most likely combination of outputs and is able

to give confidence intervals for every prediction. As it is a supervised machine learning

technique, the predictive performance becomes better with increasing available data. This

Introduction 11

means most weight is on feature engineering and parameter optimization to gain the best

surrogate model for the available limited data set.

1.4.3 Neural Approach

”What fires together wires together” [32] is the basic logic of the perceptron network, a

unit imitating a biological neuron. In 1958 it was originally devised for image recognition

but due to poor performance it stagnated for many years. [33] With the improvement

of multilayer perceptrons and the rise of GPU-hardware the algorithm had a dramatic

performance improvement. Single layer perceptrons can only approximate linearly sepa-

rable patterns. Adding more layers enables more complexity. Multilayer Perceptrons are

usually referred to as Artificial Neural Networks (ANN).

1.4.3.1 Perceptron

The basic building block of an ANN is still the perceptron or slight variations thereof.

Bias

B

X1

...

Xn

Perceptron

Inputs

W0

W1

...

Wn

Weights

Σ

Weighted
Sum

f()

Activation

Y=output

update Weights

Figure 1.10: Typical structure of a perceptron

The perceptron sums up all the inputs and applies its activation function σ() to the sum.

I(n) =
k∑

i=1

wi(n)xi(n) = xxxT (n)www(n) (1.16)

If σ() is the sign function then the perceptron is a binary classifier, with T being the

decision threshold

y = σ(I − T) =

+1 if I ≥ T

−1 if I < T
(1.17)

y(n) = xxxT (n)www(n) = wwwT (n)xxx(n) (1.18)

Introduction 12

Then it updates the weights depending on the difference to the desired output, where β

is the learning rate.

www(n+ 1) = www(n) + βxxx(n)Twww(n)xxx(n)

= www(n) + βxxx(n)Txxx(n)www(n)

= www(n) + βR(n)www(n)

(1.19)

R(n) is here the covariance matrix. The above equation can be written in continuous

form.
www(n+ 1)−www(n)

β
≈
dwww

dt
= R(n)www(n) (1.20)

A single linear perceptron tends to extract the principal component from a stationary

input vector sequence, emulating PCA [34]. The original structure of perceptrons is

usually used as a classifier, however combining different activation and loss functions

enables also regression problems to be solved.

1.4.3.2 Artificial Neural Networks (ANN)

One can put several perceptrons or nodes in series and/or parallel to create a network,

an artificial neural network. The output of nodes of one layer (parallel perceptrons) is fed

as input into the next layer of nodes.

Figure 1.11: Basic Structure of ANN

While perceptrons have a preferred binary output as 1 or 0, the activation functions of

ANN-nodes are chosen such, that the output is graded between 1 and 0 (tanh, ReLU, sin

etc.). This allows for backpropagation of the weights using a given loss or error function

as shown by Rumelhart [35]. In order to understand the best learning direction one needs

to understand the gradient of the errors which are calculated using backpropagation. The

Introduction 13

combined input xj to the node j is a function of the outputs yi of the previous layer,

connected to j with the weights wji similar to (1.8):

xj =
∑
i

yiwji (1.21)

The output yj is depending on the activation function σ()

yj = σ(xj) (1.22)

Thus when a given solution d exists one can calculate the error E for a given number of

data points c :

E =
1

2

∑
c

∑
j

(yj,c − dj,c)2 (1.23)

This is also called the forward pass through the ANN. To find the gradients a backward

pass is performed. One starts by computing the differentiation for a particular data point

∂E

∂yj
= yj − dj (1.24)

then using the chain rule one can derive

∂E

∂xj
=
∂E

∂yj

∂yj
∂xj

(1.25)

This means one knows what change is necessary in the input xj in order to decrease the

error. But the input itself compounded of outputs from previous nodes and of weights.

In order to have the dependency of the error on a part of the ANN that is changeable,

one needs the derivative with respect to wji, the weight of the connection from j to i:

∂E

∂wji
=
∂E

∂xj

∂xj
∂wji

=
∂E

∂xj
yi

(1.26)

Once the best direction to reduce the errors is known for every weight it is changed

proportional to the accumulated gradient over all input output cases.

∆w = −ε∂E
∂w

(1.27)

As Rumelhart stated, gradient descent is not as efficient as methods using second deriva-

tive (e.g. Newton Method and other using a Jacobian), but is much simpler and par-

allelizable. This allows for speedup when using Graphical (GPUs) or Tensor processing

Units (TPUs). Gradient descent can however be significantly improved by employing an

acceleration in the optimization space. Thus weights with a steep gradient will experience

Introduction 14

bigger changes also in successive updates

∆w(t) = −ε ∂E

∂w(t)
+ α∆w(t− 1) (1.28)

With t being an incrementing counter for every update, α and ε are tuning parameters.

1.4.3.3 Autoencoders

Autoencoders are a special type of neural network, that due to its architecture serves as

encoder (dimensionality reduction) and decoder (reconstructon), as can be seen in figure

1.12 from [36]. To use an autoencoder the network is first trained on the data set and then

split apart afterwards to encode and decode. There exists some difficulty of building an

effective interface between PCE and autoencoder. The encoder would need to be trained

in combination with the PCE inputs and the decoder with PCE outputs.

Figure 1.12: Basic Structure of an autoencoder

In order to train any ANN efficiently it needs a high amount of high quality data. If it

is designed as a deep network (more than two node layers), the data does not need to be

engineered, as it is able to do its own feature selection [37]. But it is difficult to generate

enough data, if one data point requires more than 12h to generate using FEM simulation.

1.4.3.4 Physics Informed Neural Networks (PINN)

In order to reduce the need for training data, an alternative strategy has been found to

make the supervised ANN semi- or even unsupervised. Physics informed Neural Networks

are algorithms that use the auto-differentiation feature of back-propagation. As seen in

the equations above, for the correct update of ANN weights the derivative of the output

with respect to the inputs is always computed. Thus at any step one has access to the

values of the derivative from the network output with respect to the network input without

extra computational effort. This is composed using the chain rule.

Introduction 15

Figure 1.13: Basic Structure of PINN

In the case of this thesis one is interested in the solution of a special case of heat equation.

This partial differential equation (PDE) can be written in the form

ρcp
dT

dt
=

d

dx
(k
dT

dx
) + q (1.29)

As both x and t are inputs and u is the output of the network, equation (1.26) can be

solved by the network. The network still needs to be trained to solve it correctly, and

for this a adequate loss function has to be formed. As described above the loss or error

function is important to find the gradient for updating the weights. One way to derive a

loss function the correct solution of the PDE is by rewriting it as a residual:

Eres = ρcp
dT

dt
− (

d

dx
(k
dT

dx
) + q) (1.30)

The loss also needs to be defined for the boundary and initial conditions.

Einit = Tinit − T (1.31)

and for a fixed temperature Dirichlet boundary

Eboundary = Tboundary − T (1.32)

but also a gradient von-Neumann boundary condition can be implemented due to the

auto-differentiation ability of the network

Eboundary = fboundary −
dT

dx
(1.33)

where f is representative for the given flux. A big advantage of this process is that the

network generates its own training data according to the given loss functions. In the

Experimental Setup 16

case that some additional data is available, be it in the form of experiments or FEM-

simulations, they can be fed in using another loss. This new loss is not dependent on

any predetermined mesh as conventional methods are and can be evaluated at any given

location.

Edata = Tdata − T (1.34)

During the training process the error will decrease and the PDE-residual gets minimized.

It was shown that the generalization error decreases if the training error decreases [38].

So ensuring a low training error is important for ensuring a good prediction performance.

Chapter 2

Experimental setup

2.1 The Problem Statement

As touched upon in the introduction, the goal of this thesis is to find a surrogate model

for the thermal simulation of moving LASER heat source for a domain in the millimeter

range.

The thermal simulation considered in this thesis is using HastelloyX as a material. Its

latent heat of 276kJ/kg is applied between 1260 and 1660◦C, it has a specific heat of

605 J
kgK , a density of 8220 kg

m3 and a temperature dependent conductivity as shown in

figure 2.1:

Figure 2.1: Modelled conductivity of HastelloyX

This representation of conductivity was chosen to simplify the convective heat transfer

inside the molten metal. This way only conductive heat transfer could be used inside the

domain. It also made the simulation convergence more stable (for more detail see [20]).

There are cubic regions in the domain filled with powder that have a different conductivity

17

Experimental Setup 18

of 0.124 W
mK at 25◦C which increases to 0.169 W

mK at its liquidus temperature of 1260°C. If

heated beyond this point, the powdered material switches to become ”dense” material,

i.e. it is no longer powder and follows the curve above.

The top layer of the domain is covered by a 0.03mm thick powder layer and a LASER is

moving in a straight line along the center of the top surface in x-direction. The LASER

process parameters can be seen in table 2.1.

Process Parameter Value

Laser Source spherical Goldak

Laser beam diameter d 0.055mm

Laser Power P 200W

Absorption η 70%

Penetration depth c 0.1mm

Starting Point x0 = −1

Laser Speed v 900mm
sec

Domain size x ∈ [−1, 1.8]

Domain size y ∈ [−1, 1]

Domain size z ∈ [−1, 0.03]

Table 2.1: Process Parameters

A Goldak heat source model [39] is a way to represent the Gaussian distribution of the

absorbed energy of a Laser source and can be seen in figure 2.2 from [40].

Figure 2.2: Goldak Heat Source Representation (elliptic)

Experimental Setup 19

q(x, y, z, t) =
6
√

3ηP

σ3π
√
π
exp(−3

(x+ vt)2 + y2

σ2
)exp(−3

z2

c2
) (2.1)

Where σ is the radius and v the speed of the Goldak source.

At the top surface a convective flux and radiative heat transfer were applied, where

the ambient temperature is always 25◦C, the heat transfer coefficient is 25 W
m2K

and the

emissivity of the material is equal to its absorptivity. The rest of the domain boundaries

were considered insulated.

The surrogate must be able to accurately predict the temperature distribution of the

steady state for different powder arrangements. Steady state here means that the shape

of the temperature field is only experiencing a translation along the laser path and no

change in geometry. Accurately means that the maximum error in the domain is below a

given threshold t

E =
|TPred − TFEM |
max(TFEM)

(2.2)

max(E) < t ≈ 5% (2.3)

2.2 The Dataset

Building on the effort of the previous students [20], we had access to a dataset consisting

of two times 30 FEM simulations implementing the described problem. One half consists

of powder pockets in the corners of a 2.8x2x1mm domain, the other half of powder pockets

in the middle of the domain. The FEM simulations have been cut in the beginning to

only leave the steady state solution of the heat source moving across the domain. Both

the heat-up and the cool-down phase were cut away. This made the training more easy

and focussed on the part of interest. The simulations have been using the mesh defined

in figure 1.5 and were the base for all training data.

2.3 PCA+PCE setup

In the previous work the FEM simulations had been replaced as a combination of PCA

dimensionality reduction and PCE surrogate. The first step was to establish the perfor-

mance of this approach and recreate the results. Previous work had represented powder

pockets as six values, three for the center coordinates of the pocket and three values for

the size in each of the coordinate axis. PCA was then used to find the six eigenvalues

of the entire dataset that would represent it the best. It can be considered an informed

dimensionality reduction as existing knowledge about the shape of the powder (cuboid)

Experimental Setup 20

was used to reduce it down to six values. PCA just looked in the 6 dimensional space

for the best combination of eigenvectors to represent it. The six dimensional input of the

PCE then gave as output the temperature evolution of the entire domain.

The alternative is an algorithmic dimensionality reduction using PCA to determine the

eigenvectors of the dataset and only choosing those vectors corresponding to an eigenvalue

above a certain threshold, as described in the introduction. Human intuition fails in high

dimensions [41], so it is unlikely to choose the right variables that best reduce a dataset.

In the case of powder pockets, the mesh described in 1.5 consists of over 70’000 elements,

each either powder or dense. If PCA is applied and then reduced, a set of 16 eigenvectors

remains. This is better for the PCE to work with as it can draw more information from

this, but it is still a small number of inputs to allow a fast surrogate. Additionally it

allows for different shapes of powder distributions besides cubic.

PCA was also used to reconstruct the surrogate predictions. For this the training output

was reduced, and the same vectors were applied to the PCE output for reconstruction.

Also a short venture into Kernel PCA was taken. It was quickly clear that hyper pa-

rameters have to be learnt for this dimensionality reduction method. Otherwise there

cannot any reasonable reconstruction which is paramount in the combined approach of

PCA and PCE or even a guaranteed reduction of the data. This requires large amounts

of data. Thus, one might as well turn to neural networks for modeling the process and

have the added benefit of having a model with changing parameters. As described in

the introduction one can think about using a combination of auto-encoders and PCE. As

shown in the results, that PCE is able to model the process down to a couple percent of

error given PCA as dimensionality reduction. The shortcoming of auto-encoders is similar

to Kernel PCA, as there are many hyper-parameters to be learned. It cannot be simply

reversed, one has to learn the best set of weights and biases for encoding and decoding.

For this however the existing data set is not large enough. There are some established

ways to deal with small data sets like transfer learning [42], but this is not applicable

here. An alternative is as described above to use unsupervised methods, that learn the

desired behavior without the need of a training set. Examples of this are theory-guided

auto encoders [36] or physics informed neural networks [43].

2.4 PINN

The reason for trying out PINN was the cost of generating new data points. PINNs

are able, under the right model setup, to create their own dataset by sampling the PDE

loss from a given collocation point. As described before, it is thus an unsupervised or

semi-supervised method, if support points are used. The networks were initialized using

Experimental Setup 21

the Xavier or Glorot initialization as it is superior to an uniform initialization especially

for deep networks [44]. As neural networks can predict better when they are solving in

non-dimensional variables, the PDE was converted to variables in the order of magnitude

between [-1,1] [45].
du

dt
=

d

dx
(k
du

dx
) + q (2.4)

u ∈(0, Û)

t ∈(0, T̂)

x ∈(0, X̂)

q ∈(0, Q̂)

(2.5)

Where the variables with hat are the maximum expected variables. So we can transform

du

dt
=
dū

dt̄
∗ Û
T̂

(2.6)

with

ū ∈(0, 1)

t̄ ∈(0, 1)
(2.7)

As the domain boundaries are already within the acceptable margin for the network only

time and temperature has to be normalized for performance. Equation (2.3) is put in

(2.1):

dū

dt̄
∗ Û
T̂

=
d

dx
(kÛ

dū

dx
) + q (2.8)

Û is constant, so can be taken out of the space derivative.

dū

dt̄
= ��̂U

d

dx
(k
dū

dx
)
T̂

��̂U
+ q ∗ T̂

Û
(2.9)

The PINN is then calculating and reducing the residual of equation (2.8)

R =
dũ

dt̄
− d

dx
(k
dũ

dx
)T̂ − qT̂

Û
(2.10)

Here ũ is the prediction of the PINN. Umax is be the expected maximum temperature of

the output and can be tuned. In the case of the original problem statement it was set to

2400.

Experimental Setup 22

2.4.1 Benchmark Testing

In order to ensure correctness of the neural approach, the validity of the predictions was

confirmed at several steps of complexity. This allowed a steady progression of the code

while being sure that the predicted results are correct.

2.4.1.1 1D Heat equation with sinusoidal initial condition

To establish the functionality of the PINN a 1D model was employed. This used a

sinusoidal initial condition and Dirichlet boundaries enforcing the value 0. This was

easily learned and can be seen in fig. 2.3

Figure 2.3: 1D Prediction vs Exact Temperature

It is apparent that this is not a very hard problem to solve, but it is important to increase

complexity slowly to make sure the code is in right working order.

2.4.1.2 2D Heat equation with Dirichlet and von-Neumann boundary coon-

ditions

Next a 2d domain was simulated and the boundary condition on one side was switched

from Dirichlet to von-Neumann, deploying an insulated boundary on the bottom side. It

is important to test the functionality of insulated boundaries as in the final simulation

all boundaries will have von-Neumann boundaries. The domain was initialized with a

fixed value of one. As is visible on fig. 2.4 the network prediction looks closely like the

conventional FEM prediction.

Experimental Setup 23

Figure 2.4: Predicted and FEM Solution to the Boundary Problem

Directly comparing PINN with the FEM resulted in a 2% error as can be seen in fig.

2.5. It is clear that 2% is an acceptable albeit large error for such a simple problem,

but in order to converge to a smaller error one needs to employ hyper-parameter tuning

using Ensemble training. It is not urgent to get the error down further for such a simple

case, as it the goal was to show that the network can ”accurately” predict the physics of

the problem. Notable is the asymmetry of the prediction, as the PINN is using gradient

descent to reduce the residual, the network might converge to asymmetric local optima.

Figure 2.5: Prediction Error vs FEM

Experimental Setup 24

2.4.2 2D Heat equation with Static Gaussian heat source

The next step was to compare the performance when a static local heat source is intro-

duced. This is an important step as in the desired model a similar source will be moving

in time. One can see in fig. 2.6 that the behavior is captured well and the performance

is acceptable with some temperature values are deviating by 0.8° or 3% as can be seen in

figure 2.7.

Figure 2.6: Predicted and FEM Solution to the static source Problem

Figure 2.7: Prediction Error vs FEM

2.4.3 Implementation of the problem statement

After preliminary benchmark testing the complete problem statement above was imple-

mented in python. This was build upon the PINN infrastructure by Mishra and Molinaro

Experimental Setup 25

as in [43]. An environment was created for the PINN to start its training. ANN have dif-

ficulties solving any problem that is not differentiable, so every variable in any dimension

had to be smooth in the implementation. For the temperature dependent conductivitiy in

figure 2.1 this was done using a four point cubic Bezier curve. This allows for the enfocing

of a given slope at the end points (P1 and P4) and a smooth transition between slopes.

[46]

P (t) = (1− t)3 ∗ P1

+ 3t(1− t)2 ∗ P2

+ 3t2(1− t) ∗ P3

+ t3 ∗ P4

(2.11)

Where the range of t ∈ [0, 1] defines the progression of the interpolated curve. P1 was

chosen as 25°, P2=1200°, P3=1300° and P4 as 2000°, this resulted in the conductivity

shown in figure 2.8.

Figure 2.8: Smoothed conductivity of HastelloyX

Also, the phase boundary between powder and dense was smoothed using a logistic func-

tion as a value of 0 referred to powder state and a value of 1 referred to the dense state.

When reaching the liquidus temperature of 1260°C the powder should be completely

molten and have transitioned to a dense state.

Experimental Setup 26

Figure 2.9: Smoothed phase transition

Convective Boundary condition are currently not possible with the infrastructure, so the

top surface was implemented as insulated. This would have been fixed later if the setup

was performing good otherwise. Sadly this was not the case. The results were completely

nonsensical, returning negative temperatures:

Figure 2.10: Failed PINN prediction of the complete problem

2.4.4 The simplified Problem statement

The model had to be simplified to identify the critical element that prevented the con-

vergence of the simulation. The material parameters were simplified and all temperature

dependencis were eliminated.

Experimental Setup 27

Material Parameter Value

Density 8220 kg
m3

Specific Heat 605 J
kgK

Constant Conductivity 100 W
mK

Table 2.2: Simplified Material Parameters

Also, the process parameters were changed in order to be able to debug easier and find

the problematic parts of the simulation.

Process Parameter Value

Laser Source spherical Goldak

Goldak Radius σ 0.05mm

Penetration depth c 0.05mm

Laser Power P 150W

Absorption η 50%

Starting Point x0 = 0

Laser Speed v 1000mm
sec

Domain size x∈[-1,1.8]

Domain size y∈[-1,1]

Domain size z∈[-1,0.03]

Table 2.3: New Process Parameters

The PINN still had to be able to simulate the transient heating phase, in contrast to the

PCE model, that was able to be trained on steady state FEM simulations. The PINN

needs to recreate the entire physical process in order to reach a steady state. However,

even when simulating a completely dense domain, with no temperature dependency and

simplified parameters, the results did not converge to a sensible result. As can be seen in

figure 2.11, where the predicted values are plotted against the correct ones.

Experimental Setup 28

Figure 2.11: Failed PINN prediction of the simplified problem

2.4.5 Solution Approaches

2.4.5.1 Scaling of PDE components

Due to the nature of training a network, it is important that all components of a loss func-

tion have the same magnitude, as otherwise some components might grow in importance

while others fall behind. If component A has 100x the effect on the outcome of the loss

than component B, then any change in component B is meaningless. In order to ensure

the scales of all components in equation 2.10 are of the same magnitude, the value of the

maximum temperature Û and maximum time T̂ are changed to ensure a homogeneous

magnitude at training start. The effect of this approach was visible in the temperature

output, but did not fix the convergence issues. Hence the issue must be somewhere else.

2.4.5.2 Ensemble training

A neural network is influenced by a number of factors called hyper parameters. This

includes the network architecture i.e. layers and neurons per layer, the choice of optimizer,

activation function and regularizer as well as the balancing factor in the loss function that

groups PDE loss with the boundary losses. It is impossible to guess the right combination

on the first try. In ensemble training the parameters are changed within a fixed domain

to find the best model architecture. The different parameter sets are then compared

against a common metric using cross validation. The assumption was that possibly the

chosen PINN architecture cannot learn or even approximate the problem, thus a better

architecture has to be found. Cycling through over 200 different settings, we did not see

a dramatic performance spike but chose the setup with the best predictive performance

Experimental Setup 29

compared to FEM. This is a six layer network with 24 neurons per layer, a tanh-activation

function using the LFBGS-optimizer.

2.4.5.3 Adding support points

Adding support points of the tested FEM simulation does not bring any benefit, except to

see that the network is practically able to approximate the desired function, as it causes an

overfit to the test set. Yet being able to approximate a function is no guarantee that the

network can actually learn it [41]. However, one can use an analytic function to generate

support points for the PINN that are cheap to generate. This would allow the network

to improve its performance by finding a better path through the loss surface. Its weights

and biases can then be used to initialize a new network that can be trained without

support points. For this the Rosenthal equation was chosen. The equation generates

an approximate solution for a PDE with a moving heat source. It works with constant

conductivity and is thus suited for the simplified problem statement [47]. The Rosenthal

equation can be seen in (2.15).

ζ(x, t) = x+ v ∗ t (2.12)

r(x, y, z, t) =
√
ζ2 + y2 + z2 (2.13)

a =
k

ρ ∗ cp
(2.14)

T (x, y, z, t) = T0 +
P ∗ η

2 ∗ π ∗ k ∗ r
∗ exp(−v ∗ (ζ + r)

2 ∗ a
) (2.15)

Where k is the material conductivity, a the diffusivity, v is the laser speed, q is the laser

power, n the absorptivity, t is the current timestep and x, y, z the evaluated locations.

Using Rosenthal support was a good path for helping the network to the right region of

the loss surface. It did reduce the error slightly, but did not manage to reduce it below the

acceptance threshold of 5%. It resulted in some artifacts on the result, as the support loss

was working against the PDE-loss. This is due to the fact that the Rosenthal equation

is just an approximation and not an exact solution of the PDE. When looking into the

ability of the network to solve exactly the equation for which the Rosenthal equation

delivers the solution, another problem became visible.

2.4.5.4 Adaptive Sampling Strategy

The region affected by the laser is very small in comparison with entire domain. The

laser affected volume is only 0.00454% of the entire domain. Thus if sampled uniformly,

Experimental Setup 30

only 23 of half a million points would sample the laser. As the PINN is only trained

on points that were sampled from the model infrastructure, it is important that enough

points from the affected area are sampled consistently over time. By printing out the

maximum sampled source term from training to training, it was clear that there was a

big stochastic influence, as it varied by up to 10%. This showed clearly that there were

inconsistencies and a better sampling strategy had to be found. The standard sampling

had been a Sobol low discrepancy sampling method, as this leads to greater accuracy than

on random points [48]. First only exchanging the sampling in y-direction with a normal

distribution centered on 0 and a standard deviation of 0.1 such that the sampled points

would be mostly in the center. This reduced the maximum sampled source variability to

5% but this was still not acceptable. The next step was moving to an adaptive sampling,

where the center of the distribution was on the laser location in the x-axis. For the ease

of implementation a triangular distribution with the limits at the domain boundaries was

used.

Figure 2.12: Probability Density of a Triangular distribution

Additionally a half-normal distribution with a shifted mode at 0.03 is used for the z-axis,

as most points are needed at the surface of the domain. This results in a collocation point

distribution that can be seen animated below (animation works only on Adobe Acrobat

reader). The orange dot represents the laser center. The collocation points are binned

together for each of the frames, as they are smoothly distributed through time.

Experimental Setup 31

Figure 2.13: The adaptive sampling for capturing the Source

This brought down the prediction error dramatically to around 3-5%, and even eliminated

the need for any support points. Thus effectively it is again an unsupervised method.

However it did not consistently predict the correct maximum temperatures, maximum

predictions fluctuated with ±80K over time. As we saw such a big impact due to chang-

ing the sampling strategy, more effort was put on optimizing the sampling strategy to

remove this inconsistency. Adding a few points directly in the geometric center of the

laser spaced out at regular intervals removed network ability to train with as little as 10

points. These added points in or near the center will be called center bias from now on.

If noise was added to the center bias, the easier the network could train. The maximum

predicted temperature were slightly more consistent if a center bias was used once the

network managed to converge. In this report consistent maximum predicted tempera-

tures are the main measure for the consistency of the network predictions depending on

the sampling strategy, as it strictly depends on the knowledge of the network on the spa-

cial and temporal distribution of the source. From the FEM simulations we know the

maximum temperature should be steady state and thus not fluctuate at all.

Results and Discussion 32

2.4.6 Ensuring correct initial conditions

Another issue came up with the initial conditions, as the initial-loss wants to enforce a

constant temperature of 25°C, but the PDE-loss has a high power source active at t = 0,

these two losses are working against each other. In order to arrange the two losses some

expedient solutions have been implemented. Firstly, the time the simulation starts has

been moved to t = −0.1 and the source term is activated at t = 0. This way there is some

temporal leeway for the two losses. Additionally, the source is ramped up using a logistic

function over the first 5% of the time. This allows the differentiation of the source term,

as is required by the network. These workarounds do not suffice to enable a homogeneous

initial condition, they do however ease the disconnect between the two competing loss

functions. Instead of temperature discrepancies of +2000°C, the differences are now in

the order of ±10°C

(a) Initial prediction without measures (b) Initial prediction using all expedient measures

Figure 2.14: Comparison of initial predictions

Chapter 3

Results and Discussion

3.1 PCA + PCE

As described above, the predictive performance of a six variable input (location and size

of powder cuboid) to PCE was compared with a 16 Variable input. The 16 variables

were derived from the entire field i.e. an 70’000 element set using PCA. To ensure a good

generality, the data set was used to create 30 different splits for training and testing. This

ensures that there is no bias in the training set to allow for better prediction. As one can

see in figure 3.1 there exist very adversarial splits for the six variable input. In general

only the entire field input fulfills the quality requirement for the surrogate model, as the

error is above 5% for the six available input. The graphic only shows the error for FEM

temperatures above 300°C as the majority of the domain is at 25°C, it is much easier to

predict low temperatures.

Figure 3.1: Limited Error of the 6 variable vs. full field approach

33

Results and Discussion 34

Alternatively, the maximum prediction error in the entire domain shows a similar image.

The variance for the entire field approach is even lower. The maximum temperature in the

domain is 2400°C so the lowest maximum error is around 4.17%, the average maximum

error is below 5% and the maximum error in all the splits for the entire field is at 8%.

This can be counted as an outlier and half of the total maximum error of the 6 variable

approach.

Figure 3.2: Maximum Error of the 6 variable vs. full field approach

The results from the Kernel PCA are not very informative as a hyper parameter optimiza-

tion was missing to get the best reduction and reconstruction performance. Unfortunately,

a server syncing malfunction deleted the codes and further result of this evaluation, while

work had already progressed much further into programming physics informed neural net-

works. As this seemed more valuable than recreating the lost code, no other results can

be shown for the PCA and PCE model at this point.

3.2 PINN - Physics Informed Neural Networks

The performance of the simplified problem is not as easily compared as the PCE per-

formance, as the PINN also had to predict the transient heat-up phase. An accurate

transient prediction was part of the performance metric. Usually the L2-norm is chosen

to compare how well a network predicts:

L2relative =

√∑N
i=1(Ti,Pred−Ti,FEM)2

N√∑N
i=1(Ti,FEM)2

N

(3.1)

Results and Discussion 35

In this case the relative L2-norm shows 7.37% error, so above the performance threshold.

However, this is comparing all errors over all time steps over the entire domain, normalized

with the average temperature over all time steps and entire domain. This means that

the error is normalized not with the maximum temperature, but with some diminished

value. The simulation should predict the high values accurately. That is why the following

animation 3.3 shows the difference normalized with the maximum FEM temperature value

in that time step. (Animation works only on Adobe Acrobat reader)

Figure 3.3: Relative difference of the prediction vs. FEM

In the steady state domain the results are fulfilling the acceptance criterion, with errors

of less than ±2.5%. However, one can see that especially during the first frames the error

values are above the acceptance threshold. This is due to the fact that the PINN had

enormous difficulties with enforcing the initial conditions and accurately predicting the

transient period. This is also visible in the following figure 3.4, where the network was

reinitialized ten times to ensure a retraining stability.

Results and Discussion 36

Figure 3.4: Maximum temperature difference PINN vs. FEM

The average maximum prediction error in the steady state is 70°C or 2.3% relative error.

It is easily visible that the first few frames have maximum temperature differences in the

domain that are not suitable for a proper transient surrogate model. If one looks at the

maximum predicted temperatures in the domain the error becomes lower.

Figure 3.5: Maximum predicted temperature PINN vs. FEM

It is visible that despite adding a center bias as described in the Experimental Setup

section, there is still some fluctuation in the maximum predicted temperature and further

work is required.

Results and Discussion 37

3.2.1 Parametric Model

A big advantage of the PINN concept is that it is possible to make process or material

parameters an input variable in a certain range. This allows uncertainty quantification and

senstivity analysis, without the need of rerunning the FEM simulations and generating

large result files in the order of Gbyte. The machine learning model has a size of only

2Mbyte but can evaluate any point within the temporal, spacial and parametric domain.

This was tried for conductivity in the range of k ∈ [10, 200] and the model fulfilled the

acceptance threshold even when looking at the relative L2-norm from equation 3.1 of the

steady state, i.e. the first 4 frames were removed from analysis.

Conductivity in W
mK Relative L2-Norm

10 0.1016

50 0.0423

100 0.0347

150 0.0458

200 0.1935

Table 3.1: Relative L2-norm of different evaluated conductivites at steady state

It is clearly visible that at the range limits the L2 error spikes. This is due to the fact

that no special sampling strategy was chosen for the parameter space, thus there might

be less sampling points at the boundaries and the performance is poorer than for the

center values. However, just as above, the relative L2-norm is not normalized with the

maximum value but with a skewed average. When normalizing with the maximum value

of the FEM, all compared conductivities have less than 3% error for the steady state. Only

for k = 10 W
mK is the error close to the acceptance treshold at 5%. The main advantage of

parametric models is the ability for sensitivity analysis, such as shown in figure 3.6 where

the temperature evolution of the point at x = 0.43, y = 0, z = 0.03 is shown.

Results and Discussion 38

Figure 3.6: Temperature Evolution Analysis of different Conductivities

One can see that the PINN prediction closely matches the FEM simulation, with the

exception of k = 10 W
mK , where the PINN did not capture the maximum temperature.

This might be due to several reasons, most likely the sampling did not capture the source

correctly at this location and thus underpredicted. The PINN performance can also be

seen in the ”Predicted vs. Exact” figure 3.7 , where the color of the points refers to the

progression in time. It is easy to see that the transient performance gets worse the lower

the conductivity is, and thus the higher temperatures the simulation has to predict. Once

the simulation has reached the steady state, the performance seems nominal except for

the last image. Here once again the edge of the defined parameter space at k = 10 W
mK

shows poor transient performance over the domain. Noteworthy is here the changing scale

from 1750°C maximum temperature at k = 200 W
mK to 8000°C for k = 10 W

mK .

Results and Discussion 39

(a) k=200 and k=150

(b) k=100 and k=50

(c) k=10

Figure 3.7: Parametrized model performance vs. selected FEM results

In conclusion though, the parametrized model fulfilled the acceptance threshold across

all evaluated conductivities, and even has the ability to evaluate any conductivity in the

given range without any further training. Which leads to the question of training cost:

Conclusion and Outlook 40

Simulation Computational cost

5 FEM (15 output frames for entire domain) CPU: 31.6h

5 FEM (1000 output frames for 1 point) CPU: 30h

All FEM simulations used CPU: +60h

PINN Training CPU: 9.4h

PINN Training GPU: 0.4h

Table 3.2: Computational cost for FEM vs. PINN

PINN evaluations can be performed anywhere within the definition space and are not

bound by predefined evaluations of conductivity. Each parameter can be smoothly changed.

If one would use a CPU to train the PINN it would outperform even 5 evaluations using

FEM (for a given time step size). This means the ratio of 3.4 : 1 in computational time

would grow even larger if more values were compared. However, if one would use the more

fitting GPU architecture the ratio grows to 78.8 : 1, assuming that GPU could bring a

4x speedup in computational time for FEM simulations [49][50] then the ratio would still

come to 18.7 : 1. These numbers show the big promise that parametrized PINN can bring

for scientific analysis.

Chapter 4

Conclusion and Outlook

The goal of this thesis was to improve on the surrogate model from the previous thesis.

The surrogate model is supposed to dramatically reduce the computational cost required

for calculating the thermal history of the powder under a laser pass in the millimeter

domain. Due to the manufacturing process, not the entirety of the domain is filled with

dense material, some part of it is filled with powder. Powder has a much lower ther-

mal conductivity than solid material, so the surrogate model must be able to generalize

for different powder distributions within the domain. The previous work had shown the

promising capabilities of a combination of dimensionality reduction coupled with a poly-

nomial chaos expansion (PCE) that models the model output as distribution and selects

the most likely result. PCE is a supervised method that treats the model as a blackbox

and associates a selected input with a desired output. It uses preexisting (simulation)

data to create a predictive model using optimization of the PCE parameters. Due to

the complex nature of the problem, the dimension does not only need to be reduced but

also reconstructed after the PCE. Linear Principal Component Analysis (PCA) allows

to reconstruct data using the outputs of the training data. More efficient kernel based

reconstruction techniques might exist but they require large amounts of data to train the

correct set of hyper parameters for accurate results. A combination of Kernel PCA for

dimensionality reduction and linear PCA for reconstruction could be a possibility that has

not been tested. As it easier to obtain a good set of hyper parameters for dimensionality

reductions than for reconstruction. This thesis has shown that it is beneficial to not make

any assumptions regarding the best choice input variables. It is best to let PCA draw the

most information from the raw data and hand this to the PCE as input. A pre-informed

abstraction might unintentionally remove data from the model and make it harder to

train. This shows that feature engineering is the key to a good prediction [41]. In this

thesis on average the model reached relative mean square errors below 3%. However, the

blackbox approach of PCE always requires training data from simulations or experiments.

41

Conclusion and Outlook 42

This implies, that once the simulation parameters of interest are changing, a new training

data set needs to be created. This means added computational costs.

The second question that this thesis asked is if it is possible to find an unsupervised

machine learning algorithm that accurately solves the problem statement. The relatively

new algorithm called ”Physics Informed Neural Networks” (PINN) uses the autodiffer-

entiation feature of Artificial Neural Nets(ANN) to solve the partial differential equation

(PDE) that is also solved by the FEM-solver. This way the PINN treats the PDE-solver as

blackbox and the PDE-residual as loss. It then approximates the best solver by reducing

the PDE-residual. The advantage of this is, that no training data is needed at all, only an

implementation of the PDE. The PINN then samples inputs to the PDE and trains itself.

The general infrastructure of the problem statement PDE was implemented. However not

all features of the infrastructure could be tested. The predictive problems at the begin-

ning of the process required a simplified problem statement. This removed temperature

dependency and spacial dependency of material parameters. More research has to be go

into what is missing or needs to be adapted to make them work. My evaluation is that

spacial dependency is probably easier to learn, as it is dependent on an input parameter.

Temperature is an output parameter, so dependencies can only be iteratively evaluated.

That is to say, that the output gets worse as a result of being wrong, making learning

difficult. Phase transition using latent heat, convective and radiative boundary conditions

are also not implemented as all of them are temperature dependent phenomena. Mishra

and Molinaro have shown that PINN can learn radiative transfer [43]. So one might ex-

periment with adding several ANN or PINN together that each solve parts of the PDE

and one PINN that assembles all results. Alternatively, a transfer weight initialization of

another model that is trained on a simpler problem might aid the difficulties in training.

Also support of an approximate solution has the same effect, albeit a continued training

without the approximate support is needed in order to remove artifacts trained on by the

approximation.

Using a simplified problem was a good practice however as this unveiled the importance

of a proper sampling strategy. Simply sampling equally all over the domain requires very

large amounts of points for a dense cover. The laser source has a very small spread com-

pared to the dimension of the domain, and within the laser there is a gaussian distribution

of power density. This means the location with highest power is even smaller. However,

enough evaluations at this location are necessary for the PINN to learn the behavior of the

laser source. Once this was discovered, an adaptive sampling strategy was implemented.

This made the PINN able to predict with a maximum error of 3% without any training

data. The strategy samples more points where the laser center is and moves with the

laser. The predictive performance of different distributions needs to be evaluated. The

addition of a center bias allows for the use of two different distributions, one for the larger

Conclusion and Outlook 43

domain and one close to the laser center. One might also think about an adaptive sam-

pling density that changes with expected temperature. Higher temperatures point to the

existence of the laser in that region, and more points would be sampled from that region.

This could be done with a variation of the Rosenthal equation. Once this was solved,

a model was created that took a material parameter (conductivity) as input. When im-

plementing powder pockets, the location of the powder has to become a network input,

so it is important to gain experience with parametrized models. Additionally, it might

give further insight on what happens when dealing with variable conductivity. The re-

sult was satisfying as all evaluated conductivities fulfilled the acceptance criteria of max.

5% relative error and showed the promise of cheap sensitivity analysis. This is due to

the fact that a parametric model can smoothly change the parameter value and repeat

analysis on the entire domain without the need for additional training. It needs to be

evaluated what maximum the number of parameters or degrees of freedom (DoF) is that

still produces accurate results and what domain size they can cover. Each DoF also needs

a custom sampling strategy that samples the salient points. When spacially dependent

conductivity (powder pockets) become enabled, using support data of different powder

pocket locations would further decrease the error. Currently the PINN has always been

trained on the maximum points possible with the available GPU hardware. However, it

needs to be shown what the required number of collocation, initial and boundary points is

for best performance. Lastly, the predictions need to be compared to analytical meltpool

size estimates [51] and experimental data from literature [52].

Chapter 5

Appendix: Code Base

As the code for the PINN is quite segmented, it is not conducive for understanding

to attach it all here. All the code can however be found on the gitlab of this project

[gitlab.ethz.ch/olemuell/laser-thermal-pinn]. It is a python code, based on pytorch.

My main contribution, the equation models (both the fixed and parametrized version) that

form the learning environment for the PINN can be found in the folder ”EquationModels”.

The file ”GeneratorPoints” contains the adaptive sampling strategy. This far it is hard

coded for the defined problem. To start the learning process from scratch the file ”PINN2”

has to be executed.

As this project is still ongoing with the purpose to publish a paper, the code might still

change slightly after the submission of this thesis.

44

https://gitlab.ethz.ch/olemuell/laser-thermal-pinn

Bibliography

[1] Ans Al Rashid, Shoukat Alim Khan, Sami G. Al-Ghamdi, and Muammer Koç. Ad-

ditive manufacturing: Technology, applications, markets, and opportunities for the

built environment. Automation in Construction, 118:103268, 10 2020. ISSN 09265805.

doi: 10.1016/j.autcon.2020.103268.

[2] William E. Frazier. Metal additive manufacturing: A review. Journal of Mate-

rials Engineering and Performance, 23:1917–1928, 4 2014. ISSN 15441024. doi:

10.1007/s11665-014-0958-z. URL https://link.springer.com/article/10.1007/

s11665-014-0958-z.

[3] Pablo Zapico, Sara Giganto, Joaqúın Barreiro, and Susana Mart́ınez-Pellitero. Char-

acterisation of 17-4ph metallic powder recycling to optimise the performance of the

selective laser melting process. Journal of Materials Research and Technology, 9:

1273–1285, 3 2020. ISSN 2238-7854. doi: 10.1016/J.JMRT.2019.11.054.

[4] Richard O’leary, Rossi Setchi, Paul Prickett, Gareth Hankins, and Nick Jones. An

investigation into the recycling of ti-6al-4v powder used within slm to improve sus-

tainability. Sustainable Design and Manufacturing, pages 377–388, 2015. ISSN 2051-

6002. URL http://www.inimpact.org.

[5] Hong-Chuong Tran, Yu-Lung Lo, and Trong-Nhan Le. A strategy to determine the

optimal parameters for producing high density part in selective laser melting process,

2019.

[6] Michal Krzyzanowski and Dmytro Svyetlichnyy. A multiphysics simulation ap-

proach to selective laser melting modelling based on cellular automata and lat-

tice boltzmann methods. Computational Particle Mechanics, 2021. doi: 10.1007/

S40571-021-00397-Y.

[7] Matthias Markl and Carolin K ¨ Orner. Multiscale modeling of powder bed-based

additive manufacturing additive manufacturing (am): a process of joining materials

to directly build up objects from 3d virtual prototypes, usually layer upon layer (1).

2016. doi: 10.1146/annurev-matsci-070115-032158. URL www.annualreviews.org.

45

https://link.springer.com/article/10.1007/s11665-014-0958-z
https://link.springer.com/article/10.1007/s11665-014-0958-z
http://www.inimpact.org
www.annualreviews.org

Appendix: Code Base 46

[8] Yanping Lian, Zhengtao Gan, Cheng Yu, Dmitriy Kats, Wing Kam Liu,

and Gregory J. Wagner. A cellular automaton finite volume method for

microstructure evolution during additive manufacturing. Materials and De-

sign, 169:107672, 5 2019. ISSN 0264-1275. doi: 10.1016/J.MATDES.

2019.107672. URL https://www.scholars.northwestern.edu/en/publications/

a-cellular-automaton-finite-volume-method-for-microstructure-evol.

[9] Dehao Liu and Yan Wang. Mesoscale multi-physics simulation of solidification in

selective laser melting process using a phase field and thermal lattice boltzmann

model. Proceedings of the ASME Design Engineering Technical Conference, 1, 2017.

doi: 10.1115/DETC2017-67633.

[10] Theron M. Rodgers, Jonathan D. Madison, and Veena Tikare. Simulation of metal

additive manufacturing microstructures using kinetic monte carlo. Computational

Materials Science, 135:78–89, 7 2017. ISSN 0927-0256. doi: 10.1016/J.COMMATSCI.

2017.03.053.

[11] Alberto Cattenone, Simone Morganti, and Ferdinando Auricchio. Basis of the lattice

boltzmann method for additive manufacturing. Archives of Computational Meth-

ods in Engineering 2019 27:4, 27:1109–1133, 6 2019. ISSN 1886-1784. doi: 10.

1007/S11831-019-09347-7. URL https://link.springer.com/article/10.1007/

s11831-019-09347-7.

[12] Yi Zhang. Multi-scale multi-physics modeling of laser powder bed fusion process

of metallic materials with experiment validation. Theses and Dissertations Avail-

able from ProQuest, 1 2018. URL https://docs.lib.purdue.edu/dissertations/

AAI10844033.

[13] P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore. Fluid and

particle dynamics in laser powder bed fusion. Acta Materialia, 142:107–120, 1 2018.

ISSN 1359-6454. doi: 10.1016/J.ACTAMAT.2017.09.051.

[14] Dehao Liu and Yan Wang. Multiphysics simulation of nucleation and grain

growth in selective laser melting of alloys. 2020. doi: 10.1115/1.4046543.

URL https://asmedigitalcollection.asme.org/computingengineering/

article-pdf/20/5/051002/6529773/jcise_20_5_051002.pdf.

[15] Peyman Ansari, Asif Ur Rehman, Fatih Pitir, Salih Veziroglu, Yogendra Kumar

Mishra, Oral Cenk Aktas, and Metin U. Salamci. Selective laser melting of 316l

austenitic stainless steel: Detailed process understanding using multiphysics simula-

tion and experimentation. Metals, 11, 7 2021. doi: 10.3390/MET11071076.

https://www.scholars.northwestern.edu/en/publications/a-cellular-automaton-finite-volume-method-for-microstructure-evol
https://www.scholars.northwestern.edu/en/publications/a-cellular-automaton-finite-volume-method-for-microstructure-evol
https://link.springer.com/article/10.1007/s11831-019-09347-7
https://link.springer.com/article/10.1007/s11831-019-09347-7
https://docs.lib.purdue.edu/dissertations/AAI10844033
https://docs.lib.purdue.edu/dissertations/AAI10844033
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/5/051002/6529773/jcise_20_5_051002.pdf
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/5/051002/6529773/jcise_20_5_051002.pdf

Appendix: Code Base 47

[16] Mostafa Yakout, M. A. Elbestawi, and Stephen C. Veldhuis. A study of the rela-

tionship between thermal expansion and residual stresses in selective laser melting of

ti-6al-4v. Journal of Manufacturing Processes, 52:181–192, 4 2020. ISSN 1526-6125.

doi: 10.1016/J.JMAPRO.2020.01.039.

[17] Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian

Lu, and Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution

and multistage control. Journal of Materials Science & Technology, 100:224–236, 7

2021. ISSN 1005-0302. doi: 10.1016/J.JMST.2021.06.011.

[18] Saad A. Khairallah and Andy Anderson. Mesoscopic simulation model of selective

laser melting of stainless steel powder. Journal of Materials Processing Technology,

214:2627–2636, 11 2014. ISSN 0924-0136. doi: 10.1016/J.JMATPROTEC.2014.06.

001.

[19] P. Gh Ghanbari, E. Mazza, and E. Hosseini. Adaptive local-global multiscale ap-

proach for thermal simulation of the selective laser melting process. Additive Manu-

facturing, 36:101518, 12 2020. ISSN 2214-8604. doi: 10.1016/J.ADDMA.2020.101518.

[20] Natalia Smatsi, Prof. Dr. E. Mazza, Dr. E. Hosseini, and P. Gh. Ghanbari. Surrogate

modelling for 3d multiscale thermal simulations of powder-bed additive manufactur-

ing. 2020.

[21] Sarah E. Davis, Selen Cremaschi, and Mario R. Eden. Efficient surrogate model

development: Optimum model form based on input function characteristics. Com-

puter Aided Chemical Engineering, 40:457–462, 1 2017. ISSN 1570-7946. doi:

10.1016/B978-0-444-63965-3.50078-7.

[22] Yicheng Zhou and Zhenzhou Lu. An enhanced kriging surrogate modeling tech-

nique for high-dimensional problems. Mechanical Systems and Signal Processing,

140:106687, 6 2020. ISSN 0888-3270. doi: 10.1016/J.YMSSP.2020.106687.

[23] Qiujing Pan and Daniel Dias. An efficient reliability method combining adaptive

support vector machine and monte carlo simulation. Structural Safety, 67:85–95, 7

2017. ISSN 0167-4730. doi: 10.1016/J.STRUSAFE.2017.04.006.

[24] Tong Zhou, Yongbo Peng, and Jie Li. An efficient reliability method combining

adaptive global metamodel and probability density evolution method. Mechanical

Systems and Signal Processing, 131:592–616, 9 2019. ISSN 0888-3270. doi: 10.1016/

J.YMSSP.2019.06.009.

[25] Katerina Konakli and Bruno Sudret. Global sensitivity analysis using low-rank tensor

approximations. Reliability Engineering & System Safety, 156:64–83, 12 2016. ISSN

0951-8320. doi: 10.1016/J.RESS.2016.07.012.

Appendix: Code Base 48

[26] Fabian Keller, E Mazza, E Hosseini, and S Marelli. Surrogate modelling for multiscale

thermal simulation of powder-bed additive manufacturing. 2020.

[27] Felix W Baumann, André Sekulla, Michael Hassler, Benjamin Himpel, and Markus

Pfeil. Trends of machine learning in additive manufacturing. Int. J. Rapid Manufac-

turing, 7, 2018.

[28] P O Box, Laurens Van Der Maaten, Eric Postma, and Jaap Van Den Herik. Dimen-

sionality reduction: A comparative review. Tilburg centre for Creative Computing,

2009. URL http://www.uvt.nl/ticc.

[29] Prof. Andreas Krause. Lecture notes in ”introduction to machine learning”, March

2020.

[30] Emily Gorcenski. Conference slides of ”polynomial chaos: A technique for modeling

uncertainty”, July 2017.

[31] Stefano Marelli and Bruno Sudret. Uqlab: A framework for uncer-

tainty quantification in matlab. Vulnerability, Uncertainty, and Risk,

2014. URL https://www.academia.edu/27090215/UQLab_A_Framework_for_

Uncertainty_Quantification_in_Matlab.

[32] D. O. (Donald Olding) Hebb. The organization of behavior: a neuropsychological

theory. 1949. URL https://books.google.com/books/about/The_Organization_

of_Behavior.html?hl=de&id=uyV5AgAAQBAJ.

[33] F Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain 1. Psychological Review, 65:19–27, 1958.

[34] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology 1982 15:3, 15:267–273, 1982. ISSN 1432-1416. doi: 10.1007/

BF00275687. URL https://link.springer.com/article/10.1007/BF00275687.

[35] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323:533–536, 10 1986.

[36] Nanzhe Wang, Haibin Chang, and Dongxiao Zhang. Theory-guided auto-encoder for

surrogate construction and inverse modeling. 11 2020. URL http://arxiv.org/

abs/2011.08618.

[37] Vahid Nasir and Farrokh Sassani. A review on deep learning in machining and

tool monitoring: methods, opportunities, and challenges. International Journal

of Advanced Manufacturing Technology, 115:2683–2709, 8 2021. doi: 10.1007/

S00170-021-07325-7.

http://www.uvt.nl/ticc
https://www.academia.edu/27090215/UQLab_A_Framework_for_Uncertainty_Quantification_in_Matlab
https://www.academia.edu/27090215/UQLab_A_Framework_for_Uncertainty_Quantification_in_Matlab
https://books.google.com/books/about/The_Organization_of_Behavior.html?hl=de&id=uyV5AgAAQBAJ
https://books.google.com/books/about/The_Organization_of_Behavior.html?hl=de&id=uyV5AgAAQBAJ
https://link.springer.com/article/10.1007/BF00275687
http://arxiv.org/abs/2011.08618
http://arxiv.org/abs/2011.08618

Appendix: Code Base 49

[38] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of

physics-informed neural networks for approximating a class of inverse problems for

pdes. IMA Journal of Numerical Analysis, 00:1–42, 6 2021. doi: 10.1093/IMANUM/

DRAB032. URL https://academic.oup.com/imajna/advance-article/doi/10.

1093/imanum/drab032/6297946.

[39] John Goldak, Aditya Chakravarti, and Malcolm Bibby. A new finite element model

for welding heat sources. Metallurgical Transactions B, pages 299–305, 1984.

[40] Z. Samad, N. M. Nor, and E. R.I. Fauzi. Thermo-mechanical simulation of temper-

ature distribution and prediction of heat-affected zone size in mig welding process

on aluminium alloy en aw 6082-t6. IOP Conference Series: Materials Science and

Engineering, 530, 2019. doi: 10.1088/1757-899X/530/1/012016.

[41] Pedro Domingos. A few useful things to know about machine learning. Communica-

tions of the ACM, 55:78–87, 2012. doi: 10.1145/2347736.2347755.

[42] Enzo Tartaglione, Carlo Alberto Barbano, Claudio Berzovini, Marco Calandri, and

Marco Grangetto. Unveiling covid-19 from chest x-ray with deep learning: A hurdles

race with small data. International Journal of Environmental Research and Public

Health, 17:1–17, 9 2020. doi: 10.3390/IJERPH17186933.

[43] Siddhartha Mishra and Roberto Molinaro. Physics informed neural networks for

simulating radiative transfer. Journal of Quantitative Spectroscopy and Radiative

Transfer, 270:107705, 8 2021. ISSN 0022-4073. doi: 10.1016/J.JQSRT.2021.107705.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. 2015.

[45] Timo Stöttner. Why data should be normalized before training a neural net-

work. Towards Data Science, 2019. URL https://towardsdatascience.com/

why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d.

[46] Wojciech Matusik. M.i.t. class. Computer Graphics, 837.

[47] Daniel Rosenthal. Mathematical theory of heat distribution during welding and

cutting. Welding Journal, 20:220–234, 1941.

[48] Kjetil O. Lye, Siddhartha Mishra, and Deep Ray. Deep learning observables in

computational fluid dynamics. Journal of Computational Physics, 410:109339, 2020.

ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2020.109339. URL https://

www.sciencedirect.com/science/article/pii/S0021999120301133.

https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/drab032/6297946
https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/drab032/6297946
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://www.sciencedirect.com/science/article/pii/S0021999120301133
https://www.sciencedirect.com/science/article/pii/S0021999120301133

Bibliography 50

[49] Attila Kakay, Elmar Westphal, and Riccardo Hertel. Speedup of fem micromagnetic

simulations with graphical processing units. IEEE Transactions on Magnetics, 46:

2303–2306, 6 2010. doi: 10.1109/TMAG.2010.2048016.

[50] Chao Wang, Bin Zhu, Liang Wang, Yi Lin Wang, and Yi Sheng Zhang. Gpu accel-

erated finite element simulation for ultra-high strength steel quenching. Advanced

Materials Research, 842:337–340, 2014. ISSN 1662-8985. doi: 10.4028/WWW.

SCIENTIFIC.NET/AMR.842.337. URL https://www.scientific.net/AMR.842.

337.

[51] Mahyar Khorasani, Amir Hossein Ghasemi, Martin Leary, William O’Neil, Ian Gib-

son, Laura Cordova, and Bernard Rolfe. Numerical and analytical investigation

on meltpool temperature of laser-based powder bed fusion of in718. International

Journal of Heat and Mass Transfer, 177:121477, 10 2021. ISSN 0017-9310. doi:

10.1016/J.IJHEATMASSTRANSFER.2021.121477.

[52] Shahriar Imani Shahabad, Zhidong Zhang, Ali Keshavarzkermani, Usman Ali, Yahya

Mahmoodkhani, Reza Esmaeilizadeh, Ali Bonakdar, and Ehsan Toyserkani. Heat

source model calibration for thermal analysis of laser powder-bed fusion. The In-

ternational Journal of Advanced Manufacturing Technology 2020 106:7, 106:3367–

3379, 1 2020. ISSN 1433-3015. doi: 10.1007/S00170-019-04908-3. URL https:

//link.springer.com/article/10.1007/s00170-019-04908-3.

https://www.scientific.net/AMR.842.337
https://www.scientific.net/AMR.842.337
https://link.springer.com/article/10.1007/s00170-019-04908-3
https://link.springer.com/article/10.1007/s00170-019-04908-3

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Metal Additive Manufacturing
	1.1.1 Challenges in Simulating Additive Manufacturing

	1.2 Adaptive Meshing
	1.3 Multi-scale modeling
	1.4 Surrogate Modeling
	1.4.1 Dimensionality Reduction
	1.4.1.1 PCA
	1.4.1.2 Kernel PCA (KPCA)

	1.4.2 Polynomial Chaos Expansion (PCE)
	1.4.3 Neural Approach
	1.4.3.1 Perceptron
	1.4.3.2 Artificial Neural Networks (ANN)
	1.4.3.3 Autoencoders
	1.4.3.4 Physics Informed Neural Networks (PINN)

	2 Experimental setup
	2.1 The Problem Statement
	2.2 The Dataset
	2.3 PCA+PCE setup
	2.4 PINN
	2.4.1 Benchmark Testing
	2.4.1.1 1D Heat equation with sinusoidal initial condition
	2.4.1.2 2D Heat equation with Dirichlet and von-Neumann boundary coonditions

	2.4.2 2D Heat equation with Static Gaussian heat source
	2.4.3 Implementation of the problem statement
	2.4.4 The simplified Problem statement
	2.4.5 Solution Approaches
	2.4.5.1 Scaling of PDE components
	2.4.5.2 Ensemble training
	2.4.5.3 Adding support points
	2.4.5.4 Adaptive Sampling Strategy

	2.4.6 Ensuring correct initial conditions

	3 Results and Discussion
	3.1 PCA + PCE
	3.2 PINN - Physics Informed Neural Networks
	3.2.1 Parametric Model

	4 Conclusion and Outlook
	5 Appendix: Code Base
	Bibliography

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

