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Abstract

In this master thesis, a surrogate modelling strategy for temperature
prediction in powder-bed additive manufacturing is presented. The
goal is to reduce the computational effort needed to run a multi-scale
finite element simulation for selective laser melting developed at Empa.
The reduction is achieved by substituting part of the finite element sim-
ulations by a surrogate model that is cheap to evaluate. The proposed
surrogate model uses principal component analysis to reduce the di-
mensions of input and output space of temperature fields and poly-
nomial chaos expansion to model the dependence between reduced
input and output data. For various different geometries, evolution of
the temperatures during the printing process and peak temperatures
in the build part are modeled and compared to corresponding finite
element simulations for surrogate model validation.
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Chapter 1

Introduction

Additive manufacturing has been introduced as a manufacturing technique
about 30 years ago. In its early days it has mostly been used for (rapid)
prototyping. More advanced techniques and processes allow its usage in
productive environments as well, especially in areas where conventional
manufacturing techniques are faced with challenges, such as freedom of
design [5].

Selective laser melting (SLM) is a metal additive manufacturing technique
with wide-spread use. It builds up parts by melting and fusing layers of
metal powder together. SLM provides highly accurate building components
and few restrictions on the part design. However, the mechanical properties
of the printed parts show deficiencies in terms of high porosity, distortions
or high residual stresses. Thus, for industrial applications, it is very impor-
tant to find good process parameters in order to improve the build quality.
Optimization of process parameters can be achieved with physical simula-
tions of the build process.

Many different simulations for selective laser melting focusing on different
characteristics and following various approaches have been developed. Due
to the high power of the laser, large temperature gradients appear around
the melt pool. In simulations, these gradients need to be captured accurately.
To keep the computational costs small, different simplifications are applied.
Often, the metal powder is modeled as a continuum and the dynamics re-
garding the granular form of the powder and the fluid inside the melt pool
are neglected.

To reduce the computational costs even more, a multi-scale model is being
developed at Empa by Pooriya Ghanbari. This model uses a very coarse
mesh to simulate the whole printing part and many fine mesh models that
successively cover the area around the melt pool where high temperature
gradients occur. Finally, the results of both simulation types are combined.
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1. Introduction

This approach is computationally efficient because the simulations with the
fine mesh only cover a small fraction of the complete component. Yet, for
large printing parts, many thousand fine mesh models must be solved. This
results in a large computational burden. The goal of this project is to substi-
tute these fine models in the multi-scale approach with a data-driven poly-
nomial chaos expansion (PCE) surrogate model.

Meta modelling techniques like surrogate models are used to replace expen-
sive simulations or experiments with cheap to evaluate computational mod-
els. Typically, surrogate models treat the computational algorithms they aim
to replace as black boxes and do not require knowledge about their internals.
Instead, they work in a data-driven way, i.e. they only use pairs of input and
output data points of the simulation. The goal of surrogate modelling is
to use very few runs of the expensive simulation (or experiment) at wisely
chosen sample points to construct a model that emulates the behavior of the
original simulation as good as possible.

Examples of surrogate models include Kriging [15] or polynomial chaos ex-
pansion, which is used in this project. Polynomial chaos expansion (PCE)
[22] was developed to determine the evolution of uncertainties in systems
with probabilistic input. It tries to emulate the behavior of the original
simulation with a set of orthogonal polynomial functions. Moreover, it is
specially suited for situations where only few data is available. In these situ-
ations other methods like artificial neural networks tend to perform poorly
due to gaps between data points in small data sets [11].

Surrogate modelling in the context of multi-scale simulation for selective
laser melting processes used in this project is faced with additional chal-
lenges. One difficulty lies in the very high dimensionality of the input and
output data of the finite element simulations. Sparse polynomial chaos ex-
pansion [2] can deal with reasonably high dimensional inputs. Yet, the di-
mensionality of the input space in this project is far too large and would
result in a computationally expensive surrogate model. Thus, dimensional-
ity reduction in form of principal component analysis (PCA) [6] is applied
both to the input and the output space. Principal component dimension
reduction and polynomial chaos surrogate models have been successfully
combined in [3] or in [14]. In both of these studies, the dimensionality of
the model response needed to be reduced. A second difficulty stems from
the fact that the data points (constituting the experimental design) can not
be chosen freely in the context of this project. This marks a difference com-
pared to traditional surrogate modelling where the computational model
can be evaluated at any point and the input space can be sampled with so-
phisticated sampling techniques. Polynomial chaos expansion has also been
used for purely data-driven (machine-learning) applications in [20].

In additive manufacturing simulations surrogate modelling has been ap-
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plied in different ways. A large literature review of machine learning meth-
ods in additive manufacturing is presented in [1]. For example, machine
learning methods are used to optimize process parameters such that the
overall build quality is improved. In [18], Gaussian processes are used to
model the laser melt pool depths in dependence of the laser power and
speed based on experimental data. Contrarily, in the current project the sur-
rogate model is used to predict the whole temperature evolution around the
melt pool during the printing process and not only certain parameters.

The remainder of this thesis is structured as follows. First, in Chapter 2, a
broad overview of selective laser melting and probabilistic modelling with
the polynomial chaos expansion is provided. A short introduction to the
multi-scale model, that is the basis of the proposed surrogate model follows
in Chapter 3. There, also the surrogate model itself is presented, together
with convergence studies of the most relevant model parameters. The surro-
gate model is then applied to different printing geometries and the results
are compared to finite element simulation results of the multi-scale model
in Chapter 4. Finally, in Chapter 5, the thesis is wrapped up and an outlook
on further research is given.
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Chapter 2

Theory

2.1 Additive manufacturing

Additive manufacturing, in contrast to traditional substractive manufactur-
ing techniques, is a process that gradually builds up parts, often layer upon
layer. Common additive manufacturing techniques include sheet lamination,
powder bed fusion, extrusion or beam deposition for different materials like
plastics or metals. Additive manufacturing processes began to arise with
laser sintering and stereolithography in the year 1980 [16]. Today, the addi-
tive manufacturing process usually begins with a 3D geometry constructed
in a computer-aided-design tool. Then, a so-called STL file is generated by
slicing the designed part into thin layers. Depending on the manufactur-
ing platform additional files are needed with detailed information about the
layers.

The most common types of processes for the additive building of metal parts
are powder bed fusion and directed energy deposition [7]. In this project
we will only work with powder bed fusion additive manufacturing, more
precisely with selective laser melting.

A significant advantage of additive manufacturing, compared to traditional
manufacturing, is the possibility of building more complex parts without
additional costs. This is particularly beneficial for parts with complex in-
ternal structures or with overhang structures. However, for parts with low
complexity additive manufacturing is less capable than conventional man-
ufacturing. Drawbacks of additive manufacturing techniques typically in-
clude higher costs and difficulties to assure good mechanical properties like
residual stresses and distortions. The goal of simulations of the additive
manufacturing process is to better understand the process and to optimize
the process parameters to improve the aforementioned mechanical proper-
ties.

5



2. Theory

2.1.1 Selective laser melting

Selective laser melting is a manufacturing process in the group of powder
bed fusion processes. The process starts by adding a thin layer of powder
to the build plate. The thickness of the powder layer depends on the appli-
cation but is normally in the range of 20µm and 100µm. The whole build
process is situated inside a build chamber that is filled with inert gas to
protect the metal from oxidation. After the first layer of powder is ready,
a high-energy laser is used to melt and fuse the powder at the locations
where the part should be built (according to the print data). The laser beam
is usually deflected using a laser beam deflection unit (also called the scan
head). After the first layer is finished, a second thin layer of metal powder
is put on top of the first. This continues until the part is completed. Af-
terwards, the loose powder is removed and the part is separated from the
build plate. Depending on the application, post processing steps like heat
or surface treatment are conducted.

Components in selective laser melting can be highly complex. The small
laser diameter and layer thickness allows the building of tiny structures.
One restriction, however, is the ability of conducting the heat out of the
build part. To improve the cooling, sometimes additional support structures
are added in the construction process. Also overhangs of minimum angle
smaller than about 45 degrees need special care with supportive structures
[4].

The selective laser melting manufacturing process has a range of drawbacks
that prevent its usage in industry. The printed parts can have high residual
stresses that make heat treatment in a post processing step necessary [21].
Also cracking and porous or rough surfaces can reduce the quality of the
components mechanical properties. Possible distortions are another prob-
lem. These drawbacks mostly stem from the high temperature gradients
induced by the high-intensity laser and from the layer by layer heating that
belongs to the process intrinsically.

To reduce the impact of these drawbacks, a lot of studies have been con-
ducted. Some important process parameters, which can be optimized to im-
prove the manufacturing process and the quality of the printed parts, have
been identified. These parameters include the laser power, scanning speed,
hatch spacing and layer thickness. Scanning speed is the speed with which
the laser head moves over the powder and hatch spacing is the vertical dis-
tance between two lines of laser movement. The parameters are studied
both experimentally and in simulations [10].

One more drawback is the long build time. This prevents the usage in ap-
plications where a high number of parts are needed. Selective laser melting
is rather used for small series of parts, for prototypes and very customized
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2.2. Polynomial chaos expansion

parts.

2.2 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is a spectral decomposition similar as
the Fourier series expansion. It is also commonly used as a technique to con-
struct cheap approximations of a complicated model. It aims at emulating
the input-output map of the original, expensive model in a computationally
cheap way. It is based on polynomial functions forming a basis representa-
tion on to which the model is projected. PCE can be used non-intrusively,
this means only evaluations of the model are needed to construct the approx-
imation and no knowledge about the implementation are necessary. Polyno-
mial chaos expansion tries to minimize the global error of the approximation
but it does not interpolate at the points of the experimental design.

This section is based on the material in the UQLab manual on polynomial
chaos expansion by Stefano Marelli and Bruno Sudret [12]. For a general
model with result Y =M(X) the polynomial chaos expansion can be writ-
ten as

Y =M(X) = ∑
α∈NM

yαΨα(X). (2.1)

The functions Ψα form an infinite dimensional polynomial basis and yα ∈ R

are their coefficients for any multi-index α ∈ NM. The argument X ∈ RM

of the computational model follows a multi variate probability distribution
characterized by the density fX. Then the basis functions Ψα have to be
orthonormal with respect to fX and the model must have a finite variance∫

RM
M(x) fX(x)dx < ∞. (2.2)

For any practical usage the infinite sum must be truncated to get a tractable
expression. The finite set of multi-indices considered in the truncated expan-
sion is written as A ⊂NM. Then the expansion becomes

Y ≈MPC(X) = ∑
α∈A

yαΨα(X). (2.3)

2.2.1 Orthonormal polynomials

On a domain D we can define an inner product in the following way:

〈p, q〉 f =
∫

D
p(x)q(x) f (x)dx, (2.4)

where p and q are polynomials and f is a weighting function.
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2. Theory

Using this inner product, the notion of orthogonality of polynomials is equiv-
alent to orthogonality in other vector spaces: two polynomials p and q are
orthogonal if 〈p, q〉 f = 0.

In the same way, a family of polynomials {pl , l ∈N} is orthonormal if and
only if

〈pk, ql〉 f = δk,l (2.5)

with the Kronecker-Delta

δk,l =

{
1, for k = l,
0, otherwise.

Families of orthonormal polynomials can be constructed for any positive
weighting function using for example the Gram-Schmidt orthogonalization
or the Stieltjes procedure. In the present case, the weighting function is the
probability density function (PDF) of model input space. For some probabil-
ity distributions the families of orthogonal polynomials have special names.
Some examples are:

• for the uniform distribution X ∼ U (−1, 1): Legendre polynomials,

• for Gaussian distribution X ∼ N (0, 1): Hermite polynomials,

• for the gamma distribution X ∼ Γ(1, k): Laguerre polynomials,

• for the beta distribution X ∼ B(r, s,−1, 1): Jacobi polynomials.

Until now, we considered only univariate polynomials. For a random input
vector X ∈ RM, whose components are independent of each other, a basis
of multi-variate polynomials can be constructed in a straightforward way by
using tensor product polynomials of the uni-variate family of polynomials
which are orthonormal with respect to the distribution of the ith component
of the random variable X :

Ψα(x) =
M

∏
i=1

ψαi(xi). (2.6)

The multi-index α = {α1, . . . , αM} contains the degree of each polynomial.
The orthonormality naturally caries over to the multi-variate case

〈Ψα(x), Ψβ(x)〉 = δα,β, (2.7)

with the multi-dimensional Kronecker-Delta, which is equal to one if αi = βi
for all i ∈ {1, . . . , M}.

If the components of the random input vector X are not independent, the
tensor product polynomials can not be applied directly. Instead one could

8



2.2. Polynomial chaos expansion

use a so called isoprobabilistic transformation τ to transform the input vec-
tor X to a random vector Z = τ(X) which has independent components with
marginal distributions with known orthogonal polynomials.

The polynomials are then written in terms of Z

Ψα(τ(X)) =
M

∏
i=1

ψαi(τi(X)). (2.8)

This transformation, however, can be very non-linear, leading to a decrease
in the overall accuracy of the polynomial chaos expansion [20]. In the fol-
lowing sections it is assumed that the input X has independently distributed
components.

2.2.2 Truncation of infinite-dimensional basis

For the infinite dimensional polynomial chaos expansion to be tractable it is
necessary to truncate it. In Eq. (2.3) the truncation is indicated by summing
only over multi-indices contained in a finite set A instead of NM. The most
straight-forward way is to use only polynomials up to a certain total degree
p. The total degree of a multi-variate polynomial is the sum of the degrees
of the underlying one-dimensional polynomials. Then we can write

AM,p = {α ∈NM : |α| ≤ p}, (2.9)

with |α| = α1 + · · ·+ αM. The number of elements of this set (or equivalently
the cardinality of the corresponding basis) is

card AM,p =

(
M + p

p

)
. (2.10)

Following, two further schemes to truncate the polynomial series are de-
scribed.

Maximum interaction

The maximum interaction truncation scheme aims at reducing the interac-
tion between different components of the random input by limiting the non-
zero entries of the elements of the set Ap,M defined in (2.9). For a maximum
interaction coefficient of r this truncation set is written as

AM,p,r = {α ∈ AM,p : ||α||0 ≤ r}, (2.11)

with the zero-norm giving the number of non-zero elements ||α||0 = ∑M
i=1 1ai>0.

With this basis it is possible to reduce the number of elements while retain-
ing polynomials of relatively high degrees. This is especially effective for
high dimensional input vectors.

9



2. Theory

Hyperbolic truncation

Another approach to reduce the interaction terms and keep high degrees in
single variables is the hyperbolic truncation scheme that makes use of the
so called q-norm

||α||q =
(

M

∑
i=1

α
q
i

)1/q

. (2.12)

The q-norm is similar to `p-norms for series. The hyperbolic truncation set
is then

AM,p,q = {α ∈ AM,p : ||α||q ≤ p}. (2.13)

2.2.3 Computation of the coefficients

When the truncated basis {ψα}α∈A is fixed, the next thing is calculating the
coefficients {yα}α∈A of the expansion (Eq. (2.3)). Two different methods to
do this are presented here, a projection method and a least squares regres-
sion method. With both these methods the computational model can be
treated as a black box and only a set of sample points and the correspond-
ing model response is needed. This set of input/response pairs is also called
the experimental design. The experimental design can be given a-priori or
it can be generated using different sampling techniques. In this project the
experimental design is always fixed beforehand because of reasons outlined
in Section 3.2.

2.2.4 Projection method

When we take the expectation of the polynomial chaos expansion (Eq. (2.1))
multiplied by the polynomial Ψβ (equivalent to integrating over the domain
of X) we get

E[Ψβ(X)M(X)] =
∫
DX

Ψβ(x)M(x) fX(x)dx, (2.14)

=
∫
DX

Ψβ(X)

(
∑

α∈A
yαΨα(x)

)
fX(x)dx, (2.15)

= ∑
α∈A

yα

∫
DX

Ψα(x)Ψβ(x) fX(x)dx, (2.16)

= yβ, (2.17)

using the orthonormality of the polynomial basis. For calculating the expec-
tation techniques from numerical integration like Gaussian quadrature can
be used. A N−point Gaussian quadrature rule is defined by a set of weights
{w(l)}N

l=1 and a set of nodes {x(l)}N
l=1. Applying it to the previous integral

10



2.2. Polynomial chaos expansion

(Eq. (2.14)) yields

yβ =
∫
DX

Ψβ(x)M(x) fX(x)dx ≈
N

∑
l=1

w(l)Ψβ(x(l))M(x(l)). (2.18)

For multi-variate integrals usually so called tensor product quadrature rules
are applied. This means that a one dimensional quadrature rule is applied
in every dimension of the input variable. Using such a scheme, the number
of model evaluations needed grows very quickly such that computing the
coefficients for high dimensional models using quadrature is computation-
ally not feasible. This is one phenomenon of the curse of dimensionality. As
a remedy to this problem sparse quadrature rules can be applied. Sparse
quadrature rules reduce the number of quadrature points by applying a
sparse grid, ideally without losing accuracy compared to the tensor product
quadrature.

2.2.5 Least squares regression method

A different method for finding the expansion coefficients can be derived by
writing it as a least squares problem. First, we rewrite the computational
model as a sum of the truncated expansion and a residual r:

M(X) =MPC(X) + r. (2.19)

Then the goal is to find coefficients yα that minimize the mean value of the
squared residual (the so called mean square error). This can be written as

ŷ = arg min
y

E[r2] = arg min
y

E

(M(X)− ∑
α∈A

yαΨα(X)

)2
 . (2.20)

By defining the coefficient vector y = {y0, . . . , yP−1}T and the vector with val-
ues of all the polynomials in the truncation set Ψ(x) = {Ψ0(x), . . . , ΨP−1(x)}T

for P being the number of elements in the truncation set, we can write the
least squares minimization problem as

ŷ = arg min
y

E

[(
Ψ(X)Ty−M(X)

)2
]

. (2.21)

Given an experimental design of size N with nodes X = {x(i)}N
i=1 and model

responses Y = {y(i)}N
i=1 the minimization problem (2.21) can be solved by

11



2. Theory

Ordinary Least Squares (OLS). The mean squared residual can be approxi-
mated by a sum of the squared residuals of every sample point in the exper-
imental design:

E

[(
Ψ(X)Ty−M(X)

)2
]
≈ 1/N

N

∑
i=1

(
Ψ(x(i))Ty−M(x(i))

)2
, (2.22)

= 1/N (Ay−Y) , (2.23)

where
A = {Ψ(x(1)), . . . , Ψ(x(N))} (2.24)

is the matrix containing the polynomial values of all the sample points
(called the experimental matrix). To find the coefficient vector that mini-
mizes (2.22), we can now apply the least squares method to get the least
squares solution

ŷ = (ATA)−1ATY . (2.25)

Compared to computing the coefficients with Gaussian quadrature, with
the least squares method any set of points can be used for the experimental
design. For ordinary least squares, the only condition is that the number of
sample points N must be larger than the number of unknown coefficients
P. Otherwise the matrix ATA (also called the Gramiam matrix of A) is not
invertible.

2.2.6 Adaptive polynomial chaos expansion

Using methods for assessing the error of a PC expansion it is possible to
construct adaptive methods for building the final PCE. One possibility is
basis-adaptive PCE. This means that the basis of the expansion is gradually
built up from a very small initial basis always assessing the generalization
error of the expansion. In the end, the basis with the smallest error is se-
lected.

A different family of adaptive algorithms are sparse PCE [2]. In sparse PCE
the starting point is a large basis. Subsequently, certain basis functions are
removed in order to get a sparse representation without increasing the pre-
diction error. Having a sparse representation helps to reduce issues with
overfitting that may occur when a too large basis is chosen. Especially be-
cause in many problems only low order interaction terms are important.
Besides that sparse bases are also beneficial in terms of computational effi-
ciency.

The basis truncation methods presented in Section 2.2.2 can be used here.
An alternative way to produce a sparse PCE are algorithms that penalize
models which are not sparse. Such models are commonly used in statistical
regression and classification (e.g. LASSO or Ridge regression).
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2.3. Principal component analysis

In the setting presented here such a penalty can be written as

ŷ = arg min
y

E

[(
Ψ(X)Ty−M(X)

)2
]
+ λ||y||1. (2.26)

The 1-norm is defined as ||y||1 = ∑α∈A |yα|. This term causes the algorithm
to chose a solution with small coefficients. The parameter λ can be cho-
sen such that the resulting coefficients give the smallest generalization error.
From the point of view of sparsity, it would be preferable to have a term
that penalizes the number of non-zero coefficients, i.e. use the 0-norm. But
this problem is computationally infeasible, thus the penalty is relaxed to the
1-norm.

2.3 Principal component analysis

This section uses the well written tutorial on principal component analysis
(PCA) in [17]. PCA is a method for analyzing a set of vectors in Rd and
finding a suitable lower dimensional representation of them. The goal is to
construct a set of uncorrelated variables which represent the original data,
the observations, in a way that the noise in the data is reduced and that a
representation with low redundancy is found. The PCA tries to find the best
linear transformation of the data with these properties.

Writing the ith observation, i ∈ {1, . . . , n}, as a column vector xi ∈ Rm we
can define the data matrix as

X = [x1, . . . , xn] ∈ Rm,n. (2.27)

The columns of X are the observations and the rows are the measurements
of a certain component. The basis transformation of the PCA can then be
seen as multiplying X with a suitable matrix P ∈ Rm,m:

X̂ = PTX, (2.28)

where X̂ ∈ Rm,n is the matrix containing the transformed observations as
columns, also called the component scores. The columns of P form the basis
of the transformed space. In PCA this basis should be orthonormal and
the basis vectors are called the principal components. Now the question
remains how to choose this new basis {p1, . . . , pm}.

To answer this we look at the covariance matrix of X and X̂ that is defined
as

CX =
1

n− 1
XXT ∈ Rm,m. (2.29)

The sample variance of each measurement is represented through the diag-
onal terms of the covariance matrix and the covariances between different
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2. Theory

measurements are on the off-diagonals. Consequently, we call the covariance
matrix of the transformed observations CX̂. In order to have uncorrelated
transformed variables x̂i, the off-diagonal entries of CX̂ must be zero. Ad-
ditionally the diagonal entries of CX̂ should be ordered according to their
size to get an ordering of the importance of each transformed variable in
explaining the variance of the original observations. This means the sought
transformation should diagonalize the covariance matrix of X with an or-
thonormal basis.

A conceptually easy way to think of what the principal component analysis
does is the following: In a first step, choose the first basis vector p1 ∈ Rm

as the direction in which X has the largest variance. The second direction
should again maximize the variance of X. However, the second basis vector
p2 must be orthogonal to p1. These steps can be repeated until m basis vec-
tors are found which all are orthogonal to all the others. Practically however,
the principal components are found by either diagonalizing the covariance
matrix CX or by computing the singular value decomposition of X. In the
first case, the principal components correspond to the eigenvectors of CX.
The transformed variables are then computed according to Eq. (2.28). To
account for the sensitivity of the PCA to the scaling of the observation usu-
ally the mean of the measurements is subtracted first from the observations
before computing the covariance matrix (normalization).
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Chapter 3

Model Development

In this chapter the process of model development is described. Firstly, the
original multi-scale model developed by Pooriya Ghanbari at Empa is pre-
sented, secondly the surrogate model developed in this project.

Modelling the process of additive manufacturing is needed to better under-
stand what is going on and how to improve the manufacturing process. Due
to the localized laser source very large temperature gradients evolve in vicin-
ity of the melt pool. These temperature gradients and the very fast heating
and cooling of the material may lead to residual stresses [21]. Residual
stresses can severely impact the material quality of the final part and can
cause distortions, delamination or cracking which is not desirable. Simula-
tions are used to predict the residual stresses in printed parts, to understand
their formation and to optimize process parameters in order to minimize the
formation of residual stresses.

There exist various models and scientific simulations to study the process of
selective laser melting. That is very complex due to the large range of length
and time scales included. The powder grain sizes are usually in the range
of micrometers whereas the size of the part to be built can be in the order
of centimeters. Currently, it is practically infeasible to accurately simulate
the manufacturing process in full complexity on all length scales even with
a super computer. There are simulation models focusing on the full thermo-
fluid-dynamic description of the melt pool with laser absorption and heat
transfer mechanisms like conduction and convection. These simulations are
so costly that they usually only simulate a few layers of the whole compo-
nent. On the other hand there are simulations that focus on the whole part
and apply approximations to the heat transfer and the melt pool dynamics
to lower the computational costs. These component-scale models aim at pre-
dicting residual stresses or distortions in the final component, which is not
possible with models acting on a smaller scale. A review of different process
models and simulations for additive manufacturing can be found in [8].
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3. Model Development

3.1 Multi-scale model

To improve the accuracy of simulations on the component-scale level, a
multi-scale simulations is being developed at Empa. The goal of this multi-
scale is to have a more accurate model in the melt pool region without sub-
stantially increasing the computational costs. In this section the already
existing multi-scale simulation is briefly described.

The multi-scale model is based on a finite element model simulated in
Abaqus. It is composed of one global simulation and multiple local sim-
ulations. The laser is applied to the finite element model as a heat source
using Abaqus subroutines. The laser absorption of the powder is included
to compute the increase of total energy of elements in lower layers.

3.1.1 Global simulation

The global model includes the complete printing part and it simulates the
duration of the whole printing process. Each printing layer is simulated
using a step with laser heating and a cooling step in the end. After the
cooling step, a new powder layer is added by changing the properties of
the elements on top of the last printing layer. Because the global model
contains the whole component, the elements of its finite element mesh need
to be coarse in order to be able to simulate it within a reasonable time. The
time steps are rather large as well. This leads to a simulation with limited
accuracy.

3.1.2 Local simulation

Compared to the global simulation, the local simulations only model the
region directly around the laser and the melt pool. In the course of a layer
multiple local simulations are used. The first local simulation starts at the
beginning of the layer and is positioned such that the laser is in its center.
The laser movement is then simulated with the local model for a short time
period. The area of the next local model is shifted in the direction of the laser
such that the laser is again in its center. In this manner, the local models
in the end cover the whole layer. The local models use the temperature
data from the global model as boundary condition. The initial temperature
values come from the previous local model except for the very first model
in each layer, which takes the initial values from the global model.

The finite element mesh of the local model is much finer than the one of the
global model and also the time steps are smaller. This gives a more accurate
simulation in the region of the melt pool where high temperature gradients
exist and high accuracy is needed.
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3.2. Surrogate model

Figure 3.1: Proposed workflow of the surrogate model with dimensional reduction and recon-
struction of the features in the original space.

Finally, the simulation results of the local and the global simulations can
be combined to get the temperature evolution in the whole printing compo-
nent. This procedure helps in getting accurate results of the printing process
within a reasonable simulation time. The most time consuming part of the
simulation is solving all the local models. The solution of one local model
is not really expensive but the number of local models to solve is typically
large. These local models always have a similar geometry, slightly different
initial and boundary conditions and, of course, model the same physical
system of the laser beam. The goal of this project is to substitute these local
finite element models with a cheap surrogate model to reduce the computa-
tion time for the whole multi-scale simulation.

3.2 Surrogate model

In this section we describe the surrogate model that is developed in this
project. The surrogate model is a data driven model to replace the local sim-
ulations of the finite element model. This means that the surrogate model
is not developed based on physical principles but it rather tries to find and
approximate a map between some input and output data. In the local model,
the input data are the initial temperatures of all the nodes in the local finite
element model and the temperature values of the nodes on the boundary of
the local model for each of the ten time steps that one local model covers.
The output (or result) data of the local simulation are the temperature values
of the nodes for all ten time steps.

The surrogate model of this project consists of two fundamentally different
parts: dimension reduction with the principal component analysis and the
statistical model itself (polynomial chaos expansion). The method of princi-
pal component analysis (PCA) is described in more detail in Section 2.3. In
this project we use PCA to reduce the number of dimensions of the input
and result data and to extract the important features because the dimension
of the input data (about 2500) and result data (about 22000) is too high to be
handled directly.

The goal of the actual surrogate model is then to find the mapping between
the space of reduced input and result temperatures. For this task a poly-
nomial chaos expansion (PCE) model is used. The corresponding theory is
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3. Model Development

Figure 3.2: Workflow for the prediction of a layer. The prediction results of a local model
are interpolated to the coordinates of the next local model and used as input values to the next
surrogate model.

described in Section 2.2. The parameters of the polynomial chaos expansion
model are determined using training temperature data from the finite ele-
ment model. With the high-fidelity FE model, the temperature evolution can
only be computed starting from the beginning of a printing layer because
the local models (and thus the time steps) depend on their predecessors. As
the first local model only depends on the global model the thermal data can
be computed on each layer independently of the previous layers.

It is important to distinguish between the dimension reduction by princi-
pal component analysis and the polynomial chaos expansion. The principal
component basis can be computed from the same training data as for the
PCE. Then it is specifically suited for the training data set and provides
very good reconstruction rates. Yet, for slightly different test data the per-
formance of the reconstruction might drop significantly, especially if the test
set contains features the training set does not. An alternative is to build
the basis from specially gathered (even artificial) data that provide a good
overview of possible features arising in the local simulations. This can be
done beforehand without actually solving the finite element model. It is only
necessary to have a large set of initial and boundary temperatures for the
input data and a set of typical result temperatures for the output data. The
principal component spaces for the input and the output can be trained in-
dependently. In the current project, the polynomial chaos expansion model
is trained and built anew every time it is used for a new printing setting.
It is trained with training data that must be computed with the expensive
finite element model. Thus, it is very important to investigate how much
training data is really needed. Using too few training data will lead to poor
surrogate model results while using very much training data is computa-
tionally expensive. In a further step it should be studied if it is possible to
train the polynomial chaos model for a more general setting and not just for
one printing condition.

With the model described above it is possible to predict the temperatures
of one local model (including ten time steps). For practical purposes in
the simulation it is necessary to be able to predict the temperatures of all
local models in one layer given only the initial temperatures from the first
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3.2. Surrogate model

local model of the layer and the boundary temperatures for every time step.
As described before, the covered area of successive local models is shifted
in the laser direction but has a substantial overlap. In the finite element
code the initial temperature of a local model is found by interpolation of
the temperature values of the previous local model. In the surrogate model
this is achieved in a very similar way. The temperature results of the last
time step of one local model are interpolated to the nodes of the next local
model. The boundary temperatures for the next ten time steps from the
global model are added. These temperature values then form the input data
for the surrogate model to compute the next ten time steps.

All computations regarding the polynomial chaos expansion, its training
and evaluation are done using the UQLab1 Matlab software from the Chair
of Risk, Safety and Uncertainty at ETH Zurich [13].

3.2.1 Cross validation

When a statistical model is built it is not always simple to determine its
quality. The difficulty is due to models often being used for predicting
responses to new observations where the true model response is not known.
Usually, gathering additional data for model validation is expensive or not
possible at all.

The error of the model response to a new data point is called the generaliza-
tion error. One strategy to determine this error is to scale the prediction error
of the model on the training data set in some sophisticated and mostly the-
oretically justified way. A different widely used approach is cross validation
or the validation set approach. In the validation set approach one splits the
original data randomly into two sets: a training data set and a validation set.
All the steps required to build the model are conducted only on the training
set. When the model is built, it is evaluated on the second data set retained
as the validation set. Based on these observations the test error of the model
is estimated. This approach has the advantage that the model is validated
on a independent set of observations. When finally the productive model
is built, it is of course trained on the whole data set. This method usually
works well but the error obtained is dependent on the (random) data set
chosen for validation.

In k-fold cross validation, the observation data is randomly split into k sim-
ilarly sized data sets. Then, k different models are fit. For each of these
different models one data set is not used for training. To get the general-
ization error, the models are evaluated on that data set. The generalization
error is averaged over the k different models. A typical choice for k is 5 or 10.
The higher k the better the estimation of the prediction error is. However,

1http://www.uqlab.com
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the cost of fitting k models also increases substantially (if no computational
short-cut exists). In the case of k being equal to n, the size of the total data
set, it is called leave-one-out cross validation.

3.2.2 Error measures

One frequently used error measure is the normalized root mean square
(RMS) error. This measure computes the L2 deviation of the model re-
sponses from the true data and normalizes that deviation by the standard
deviation of the data. The following formula shows how the normalized
RMS error is calculated on a validation set of size nval with true observation
results yi, model responses ŷi and ȳi = 1/nval ∑nval

i=1 yi being the mean value
on the validation set:

RMS =

√
∑nval

i=1(yi − ŷi)2

∑nval
i=1(yi − ȳi)2

. (3.1)

3.3 Theoretical error estimates

In the combination of PCE and PCA it is difficult to obtain theoretical esti-
mates for the prediction error. The total L2 prediction error we are interested
in is written as

Σ = ||M(x)− M̂(x)||2, (3.2)

with the true finite element model M and the surrogate model M̂. As
shown in [3], this total error can be decomposed into different parts. There
is an emulation error from the polynomial chaos expansion

ΣPCE =
Koutput

∑
i=1

E
[(

Bi − B̂i
)2
]

, (3.3)

where Koutput is the number of principal components used to decompose the
output space and Bi and B̂i are the true and emulated (from the PCE) princi-
pal components, respectively. The error of the polynomial chaos expansion
can be practically estimated with the leave-one-out error of every PC model.
The leave-one-out error is efficiently computed during the training process
of the PC model in UQLab and is readily available afterwards. This error
depends on the truncation parameters of the polynomial basis used in the
polynomial chaos expansion and on the experimental design. In the adap-
tive PCE algorithm, which is applied in UQLab, ranges for the truncation
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3.4. Building the principal component space

parameters can be prescribed. The algorithm then finds the truncated basis
with the lowest leave-one-out error within these bounds.

A different error contribution stems from the application of principal com-
ponent analysis to reduce the dimension of the input and the output space.
The covariance matrix of the data is computed with a finite sample. This
results in wrong empirical eigenvalues and eigenvectors (compared to uti-
lizing the actual (unknown) covariance matrix). This error can be decreased
by computing the principal components on a data set that provides a reason-
able selection of the possible data.

The principal component basis is truncated after the first few components.
The error made in this step can be estimated by looking at the non-retained
eigenvalues of the decomposition. This error can be decreased by using
more principal components. However, more principal components can sub-
stantially increase the training and evaluation time of the surrogate model.
Additionally, many principal components contain less and less predictive
information. Training the PCE model with these components might lead to
fitting noise.

The explanations above are specific for the prediction of a single frame but
can also be applied to the prediction of a whole layer. Then, additional error
terms need to be considered because of the interpolation and the usage of
previous result temperatures as new input conditions.

3.4 Building the principal component space

The theoretical details of the principal component analysis are explained in
Section 2.3. In this section we describe how the principal component basis
is computed in this project. As mentioned before, dimensionality reduction
is needed because the input data as well as the output data for the surro-
gate model is very high-dimensional and could not be used for surrogate
modelling directly. With help of the principal component analysis the high
dimensional data is transformed in to a low dimensional representation of
principal components, which still contain the largest part of the variance of
the original data. In Figure 3.3, the first four principal component eigen-
modes of a set of initial temperature data are shown.

Using principal component analysis dimensional reduction methods in this
project gives two important advantages. First, the computational costs of the
surrogate model are drastically reduced (and surrogate modelling how it is
used in this project is only made possible). Second, dimension reduction
helps to find important features and structure in the data. This is specially
important for vector valued output data. The different polynomial chaos
models for each output dimension are constructed independently from each
other. Yet, the output components themselves (the 2D temperature field in
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Figure 3.3: First four elements of the principal component basis computed from normalized
initial temperature data.

22



3.4. Building the principal component space

0 20 40 60 80 100 120 140 160 180

principal component number

10-12

10-10

10-8

10-6

10-4

10-2

100

102

p
e
rc

e
n
ta

g
e
 o

f 
v
a
ri
a
n
c
e
 e

x
p
la

in
e
d

Figure 3.4: Percentage of the total variance in the initial temperature data that is explained by
each principal component.

our case) might depend on each other. The principal components include
this dependence. Additionally, performing a principal component analysis
can help to reduce the noise in the data.

To see how well the principal component analysis works for a data set, one
often looks at the percentage of the total variance of the data set that is
explained by each principal component. In Figure 3.4 that is visualized for
a set of typical initial temperature values. We see that the percentage of
variance that each principal component explains drops very fast. This is a
good sign as it means that already very few principal components capture
and explain the largest part of the total variance in the data.

In this project, besides explaining a large part of the total variance, another
property of the principal component analysis is very important: reconstruc-
tion. As the result data is compressed, the output of the polynomial chaos
expansion model is given in terms of principal components. To be of any
use, the output of the model must be transformed back into the original
result space. Since the principal component transformation is a linear trans-
formation with a matrix with orthogonal columns, the inverse transform is
straight forward to define. The inverse transformation is not exact here be-
cause the covariance matrix of the data is only estimated from a finite data
set and because the number of principal components is truncated (as men-
tioned in the previous section). Thus, some information is lost through the
reconstruction. We need to make sure that the reconstruction error is small
enough for our purposes. This is especially important as the reconstructed
temperature profiles of one local model are used as input data to the next
surrogate model (cf. Section 3.2 and the description of the prediction of a
layer).
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Figure 3.5: Normalized reconstruction error of the principal component dimension reduction for
the result temperature data set of the geometry 3.7. The principal component basis is computed
with 50, 100 and 150 random data points of 165 in total.

In Figure 3.5 the results of a convergence test for the reconstruction is shown.
For that test, we use the result temperature data gathered in the simulation
of the geometry shown in 3.7. This data set has 165 data points in total. For
different numbers of randomly selected data points, we build the principal
component basis, project the remaining points of the data set on to this
basis and make the back-transformation of the transformed data points. In
the end, we determine the normalized difference between the reconstructed
and the original temperature data (the reconstruction error). This error is
plotted versus the number of principal components utilized to perform the
reconstruction.

The more principal components are used for the reduction, the smaller the
error of the reconstructed data (and the better the reconstruction properties
of the dimension reduction method). Of course, using more principal com-
ponents comes with the price of higher computational costs. The lowest
reconstruction error that can be achieved is determined by the quality of the
data set for training the PCA.

The principal component basis can be calculated using the training data
from the finite element simulation. If the training data is chosen well and
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Figure 3.6: Normalized reconstruction error of the principal component dimension reduction for
the result temperature data set of the geometry 3.7. The principal component basis is computed
once with only local data and once with additional global data.

contains all the representative features of the temperature distributions that
can appear in the setting studied, this approach works very well. However,
with this strategy, there must be enough training data available. For example
in Section 4.1, the surrogate model is trained with a total of only 10 data
points from local simulations of two layers. In that case, only 9 principal
components can be computed and used for the polynomial chaos expansion.

From the global simulation, rough estimates for the temperature distribu-
tion are known. Combining these estimates with the given training data to
build the principal component basis also leads to relatively good results. In
Figure 3.6 the normalized reconstruction error for different sizes of principal
component bases are plotted for temperature data from the square geome-
try. The principal component basis is computed with only 20 data points
of the local temperature data set, extended with data from the global tem-
perature simulation (red curve). For comparison, the blue curve shows the
reconstruction error of a principal component basis computed on half of the
available data from the local simulations (82 data points). For small princi-
pal component bases, utilizing only the local data gives much lower errors.
For larger bases both methods perform similarly well. If the training set of
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Figure 3.7: Sketch of the square block printing geometry.

local temperature data is large enough to compute the required number of
principal components, it seems best to only use that data. However, if not
enough local data is available (e.g. with 20 data points like in Figure 3.6,
only 19 principal components could be computed), the usage of additional
global data helps to include more features in the training data.

3.5 Single model prediction

For the first convergence experiments, the fact that training data is only
available in whole layers is ignored and we start by studying the behavior
of the model when predicting only the results of a single local model. To
achieve this, the surrogate model is trained with temperature data randomly
chosen from the local finite element simulations.

3.5.1 Input dimension convergence test

In a first convergence test we want to study the influence of the number
of principal components used as input parameter for the polynomial chaos
expansion (PCE) model. In this test the focus lies on the PCA of the initial
and boundary conditions and neither on the PCE model nor on the PCA of
the result data. The parameters of the polynomial chaos expansion model
are set to be (cf. Section 2.2):

• adaptive polynomial degree ranging from 1 to 20,

• adaptive q-norm truncation with q ∈ {0.5, 0.6, 0.7, 0.8, 0.9},
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Figure 3.8: Normalized root mean square error plotted against the number of principal compo-
nents used as input parameters for printing a solid block.

• maximum interaction order of 2 (3 was also tested and the results were
very similar).

The principal component space of the results was truncated to the first 30
modes.

The geometrical setup is printing a simple rectangular geometry without
any holes or further difficulties. It is shown in Figure 3.7. In this geometry
there are 33 printing layers with 5 local models each. This means we have
set of 165 pairs of initial and result data. In order to postpone the task of
building a good PCA basis we use all the available data for building the
PCA. Of course, in a practical use case with new data this would not be
possible (cf. Section 3.4).

We now compute the normalized RMS prediction error (see Eq. (3.1)) for dif-
ferent numbers of principal components of said basis as input to the polyno-
mial chaos model. The RMS error is computed with 2-fold cross validation.
The resulting errors are shown in Figure 3.8. Initially, the error decreases
rapidly for an increasing input dimension. Utilizing more than about 20
modes of the input data, does not increase the prediction accuracy anymore.
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Figure 3.9: Sketch of the geometry for printing two equally sized blocks with a void area in
between.
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Figure 3.10: Normalized root mean square error plotted against the number of principal com-
ponents used as input parameters in the setting of printing two columns (Figure 3.9).

The normalized prediction error then is in the range of 2% which is quite
small already. Therefore, for further studies with this geometry input di-
mension of about 16 will be chosen.

Next, the same test is conducted for a more complicated geometry, see Fig-
ure 3.9. This geometry contains a region where nothing should be printed.
This region will be filled with powder and there is no laser activity. In the lo-
cal simulations there, the temperature is only conducted and no additional
heat is added to the system. For the surrogate model the different behav-
ior in the two regions proves to be an additional difficulty as we can see
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Figure 3.11: Normalized root mean square error plotted against the number of principal com-
ponent input parameters in the setting of printing two blocks (Figure 3.9) with two different
surrogate models depending on the laser activation.

in Figure 3.10. This is a plot of the same convergence test as done before
for the simpler geometry. The lowest normalized root mean square error
in this setting is about 13% for 100 principal component modes. The error
is much higher than in the previous example and also the minimal error
is reached for a much higher number of principal components. Fitting the
polynomial chaos expansion with such a high dimensional input vector is
computationally very demanding and it may lead to overfitting.

When looking at predictions of the temperature at certain locations we see
that the model can not differentiate between regions where the laser is acti-
vated and regions where it is not. This is not surprising as the model is not
provided any information about laser activity. The logical next step is then
to include such information into the model. The behavior of the physical sys-
tem to be emulated is very different in regions with laser activation and in
regions without. Therefore, laser activation is not included as an additional
input parameter to the polynomial chaos expansion but two separate mod-
els for the two states of laser activation are trained. To this end, the training
data is split into two parts according to laser activation and for each part
a separate principal component basis is computed. For the principal com-
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ponent modes of these bases, the two polynomial chaos expansion models
are trained. In this setting we again conduct the same convergence test as
before. The results for the two different models are shown in Figure 3.11.
The model with laser activation performs similarly well as the model for the
simple geometry (cf. Figure 3.8). The local models in the solid blocks look
very very similar in both cases. The surrogate model for the region with-
out laser activation does not reach such a small error and the error decays
much slower in terms of the number of principal components. The physical
processes involved in the models without laser activation are less complex
than in models with laser activation. However, the temperature profiles ap-
pearing in the models without laser activation are much more diverse than
in the models with, as the latter always have the very dominant peak which
in the former is smoothed out over time. Therefore, the dimensionality re-
duction might be less accurate for the models without laser, which leads
to higher errors. Another reason could be that the processes in the models
with laser activation are dominated by the laser source in the simulation
domain. In the models without laser, the temperature evolution depends
much more on the far-field boundary conditions, which lie outside of the
surrogate model domain. At the same time, FE models are much cheaper to
solve in regions without laser activation than in regions with (because larger
time steps can be applied). Finally, the relative error might be larger because
the normalization factor is smaller in the models with deactivated laser due
to the temperatures being lower on average.

3.5.2 Output dimension convergence test

To gather more insight in the importance of the principal component basis
for the model output (the result temperatures of ten frames), we conduct
a similar study for the number of principal components as in the previous
section. In this convergence study we keep the number of principal com-
ponents used for the model input constant at 20 and vary the number of
components of result space basis. The other parameters are equal to the
ones in the previous section. Again, we first look at the simple filled block.
The results are shown in Figure 3.12. There, we see that the minimal root
mean square prediction error on the test set is reached already for 20 prin-
cipal components as result parameters. For the more complicated geometry
with the two blocks, we again use two different models, one that is trained
with data from the region where the laser is active and one trained with data
from the region where the laser is not active. In the results in Figure 3.13 we
see a similar effect as for the convergence test regarding the input dimension.
For the model where the laser is active, the root mean square error quickly
decays to a value similar as in the experiment with the solid block. For the
model without laser activation, however, the error decays more slowly and
reaches its minimum again for a higher number of principal components in
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Figure 3.12: Normalized root mean square error plotted against the number of principal com-
ponents used as output parameters in the setting of printing a solid block.

the result space.

The cost of training and evaluating the PCE model increases only linearly
with the number of output parameters (for every parameter an independent
model is built) in contrast to the number of input parameters. Therefore,
it is affordable to use more modes for the result space than strictly needed
according to the convergence tests. In further experiments the result space
will always be reduced to 30 dimensions.

3.5.3 Influence of experimental design size

In the previous experiments the principal components were always com-
puted using all the available data. This was done to rule out the influence
of not having an optimal reduced basis. Now, in this experiment we want
to see just this influence. To that end, we choose only a subset of all ob-
servations for building the principal component basis. With this principal
component basis we then repeat the experiment from Section 3.5.1 for the
solid block geometry, i.e. computing the normalized root mean square test
error using different numbers of principal components for fitting the PCE
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Figure 3.13: Normalized root mean square error plotted against the number of principal com-
ponents used as output parameters in the setting of printing two columns (Figure 3.9) with two
different models depending on the laser activation.

model. We repeat this test for principal component bases built with the full,
half and a quarter of the data set. The three different error curves are shown
in Figure 3.14. Note that when using only a quarter of the data set to build
the PC basis it is not possible to find more than 40 principal components
because the data set itself consists only of 41 observations. Therefore the
yellow curve stops at an input dimension of 40.

In the plot of the results we see that the error curves for the differently sized
experimental designs are very similar. For all three experimental designs the
plateau of the root mean square error is reached for about 20 principal com-
ponents. Also, the smallest root mean square error reached does not differ
significantly between the three curves. It seams that using 40 observations
to build the principal component basis (as in the yellow curve) is enough to
find the features needed to train a good surrogate model.

Now we have seen that in the simple geometric setting the size of the ex-
perimental design does not play such an important role for computing the
principal component basis. The polynomial chaos model was still computed
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Figure 3.14: Normalized root mean square error plotted against the number of principal compo-
nents used as input parameters for printing a solid block. For the different curves, the principal
components were computed using training data sets of different sizes. In the blue curve the full,
in the red curve half and in the yellow curve a quarter of the experimental design (ED) was used
for building the principal component space.

using the complete experimental design, to not mix the different errors of
the two steps. In the next experiment we are interested in how the polyno-
mial chaos model performs for different sizes of the experimental design.

To test this, we choose a validation set of 25 frames out of the 165 obser-
vations. We then train the polynomial chaos model with 16 principal com-
ponents as input parameters and 30 as output parameters. The principal
components are again computed using the full experimental design. For
training the PCE model we use training sets of increasing size (from 10 to
140 observations). Finally, the normalized root mean square test error of the
surrogate model is computed using the held-out validation set. To reduce
the variance induced by the randomness in the splits of the observations into
a training and validation set, the test errors are averaged over ten different
such splits.

The results are shown in Figure 3.15. For increasing size of the experimen-
tal design, i.e. of the set of training data for the polynomial chaos model,
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Figure 3.15: Normalized root mean square error plotted against the size of the experimental
design for training the polynomial chaos model. The solid line shows the average test error over
the different random splits whereas the shaded region depicts the minimum and maximum values
of the error.

the error decreases. This is to be expected because such statistical models
typically become better when trained on more data. More training data
generally makes it easier for the surrogate model to learn the map of the
underlying physical model. The reduction of the test error is steep in the
beginning but flatter for larger training sets. At some point, there is no large
gain in error reduction anymore when using more training data.

3.6 Full layer prediction

In the previous section only the prediction of the temperature evolution for
one local model was studied. In this section, the expansion to predicting
the temperature of a whole printing layer is shown, given only the initial
temperature at the beginning of a layer and the boundary temperatures for
every time step. The exact procedure of predicting the temperatures in a
whole layer is described in Section 3.2. Here, we show the results of a few
numerical experiments.
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Figure 3.16: Evolution of the normalized prediction error over one layer when using the predic-
tion scheme for a complete layer (blue curve) and when always using the true initial temperatures
from the finite element model (red curve).

3.6.1 Accumulation of error within a layer

The most important difference between surrogate model prediction of sin-
gle frames, as it has been done in the previous section, and predictions
of a full printing layer are the input values for the surrogate model. In
the previous section the initial temperature values came from the finite ele-
ment simulation and represented the ground truth. When predicting a full
layer, the initial temperatures of the local models can not assumed to be
known. Therefore, the temperature results from one local model are used
as input values for the next. Only the boundary temperatures, coming from
the global model, and the initial temperatures at the beginning of each layer
do not contain any error (taking the finite element model as reference).

Using the (erroneous) results of the previous surrogate model as input to
the next might lead to accumulation of the prediction error. To see how
much this influences the overall prediction error, temperature prediction of
a complete layer is studied in two different ways. First, the true initial values
from the finite element simulation are utilized as initial data for every local
surrogate model. Second, the prediction scheme for layers described above
is applied. For every local model the normalized root mean square error
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is computed and plotted in Figure 3.16. The data for this experiment come
from printing a large solid block with 40 local models in every layer. In this
setting the surrogate model generally gives very good results with small
errors. When using the true initial values an overall root mean square error
of less than half a percent is achieved. For the layer prediction with the
results of the previous surrogate model as input to the next, the error is a
bit larger but still well below one percent. In the figure we see that for the
predictions with true input temperatures (red curve), the root mean square
error takes very small values until the rise in the last local model. With
the resulting temperatures from the previous model as input (blue curve)
instead, the error starts to increase after a few local models and is always a
few times larger than the other error values. Most geometries used in this
project are much shorter than the one tested here. Thus, the accumulation
of the error within one layer does not play a too crucial role and is not
investigated much further here.

3.6.2 Convergence for number of training layers

In this section we conduct a numerical experiment to test how much data
is needed for training the surrogate model when predicting full layers (com-
pared to predictions of single frames in the previous section). Training data
from the FEM model can only be acquired for a whole layer (or a part of
it starting from the beginning of the layer) as outlined before. Thus, in this
experiment we take training data from whole layers, similarly as it would be
given in a real application. We want to find out, how many layers of training
data are required to get accurate temperature predictions. All the layers are
split in a set of training layers and a set of test layers. Then, the polynomial
chaos expansion model is trained on the set of training layers and the predic-
tion error (normalized root mean square error) is computed on the set of test
layers. This prediction error is computed for different numbers of training
layers. To remove the dependence on the random split into test and training
layers, the prediction errors are averaged over twenty different such splits.

The split into training and test sets used here is only relevant for training
the polynomial chaos expansion.The principal components are computed
with all the available data. Building a good basis of principal components is
treated in Section 3.4 instead.

The described experiment has been run for different geometries. First, we
look at the simple geometry of a fully printed block (Figure 3.7). In this
setting we use 16 principal components for the input to the model and 30
principal components for the model result. These parameters are set accord-
ing to the convergence tests in Section 3.5.1, refer to Figures 3.8 and 3.12. The
chosen geometry has a height of 33 layers and we take between 2 and 30 lay-
ers to train the model. The resulting normalized prediction errors are shown
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3.6. Full layer prediction

Figure 3.17: Normalized root mean square error at the test layers plotted against the number
of training layers for the polynomial chaos expansion model in the setting of a filled block (Figure
3.7). The solid line shows the average test error over the different random splits in training and
test data. The shaded region depicts the minimum and maximum values of the error.

in Figure 3.17. In that figure, the blue curve shows the average value of the
prediction error over the twenty different random splits in test and training
sets. To see the variability of the prediction error also the minimum and
maximum prediction errors are indicated with the red shaded area. Overall,
the error decreases with an increasing number of training layers as expected.
However, there seems to be a lot variability due to the random splits. There-
fore, it is important to choose the training layers carefully. In Section 3.6.3
this matter will be investigated more. In this experiment, random splits are
favored in order to not be biased by the choice of a certain strategy of se-
lecting the training layers. Concluding, in this setting training data of two
layers is enough to get a relatively small prediction error around (or even
slightly below) two percent.

The numerical experiment is repeated for the geometry depicted in Figure
3.9 with two filled blocks and an empty region in between. As in the previ-
ous section we apply two different models, one in the region where the laser
is activated and one in the region where the laser is not active. Here we use
20 principal components for the input space and 30 for the result space (in
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Figure 3.18: Normalized root mean square error at the test layers plotted against the number
of training layers for the polynomial chaos expansion. For this test the geometrical setup with
two separated blocks (Figure 3.9) is used and two different models are trained, for the region
with activated and deactivated laser, respectively. The solid lines show the average test error over
the different random splits in training and test data. The shaded regions depict the minimum
and maximum values of the error.

accordance with the convergence test in the previous section). This geome-
try consists of 33 layers like the solid block before. In Figure 3.18 the average
normalized prediction errors for the different number of training layers are
shown with a solid line as before. The errors are separated for the region
with active and inactive laser. Also the minimum and maximum error for
every number of training layers are indicated with the shaded regions in
the three different colors. Again, we see a large variability in the predic-
tion error with the different splits of the layers, especially when using only
few training layers. As expected, the test error is high for very few training
layers but already for more than five training layers it drops to about three
percent and a plateau is reached. Similar to when predicting only one frame,
the errors in the region without laser are always a few percent higher than
in the region with laser.

In tests with more geometries we found that the surrogate model has prob-
lems predicting the temperatures specially at the interfaces between solid
and void regions, i.e. between regions being printed and regions remaining
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Figure 3.19: Comparison of the temperature profile of a local and a surrogate model two layers
above an overhang structure.

empty. Already in the experiments before this has become visible. In the
geometry of the solid block, the prediction error was smaller than in the
geometry with two such blocks separated by an empty space. The largest
part of the error is made in the interface region, even if the overall error is
still in an acceptable range.

The problem becomes much more pronounced when looking at horizontal
instead of vertical interfaces, as they exist in geometries including an over-
hang. Such overhangs are not unusual in additive manufacturing, so it is
important to study such situations more carefully. An example of such a ge-
ometry is shown in Figure 4.5. It is like the geometry with the two columns
used before with a horizontal bar added on top. In Figure 3.19 the temper-
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ature profiles of the surrogate and the finite element model of a local simu-
lation in the second layer above the overhang are compared. The surrogate
model has been trained with two different models for laser activated/de-
activated like before. The temperature conduction near the overhang (and
generally near interfaces) is different from other regions because the pow-
der (that contains a lot of air) has a very low heat conductivity and almost
acts as an insulator. Thus, only a small part of the powder region below the
overhang will be heated up by the laser and the temperature drops very fast
with increasing distance from the laser.

In the temperature profile of the finite element model, the sharp boundary
at the interface between high and low temperature can be seen well. The
surrogate model temperature profile, in contrast, shows a rather smooth
decay of the temperature similar to regions where there is printed material
beneath. Thus, the difference between surrogate and finite element model
here is quite large. The temperature prediction of the surrogate model is
so wrong because the model does not ”know” about the printing geometry.
In the view of the surrogate model, the local models only differ by laser
activation. All cases with activated laser are modeled in the same way (of
course depending on the input parameters as well).

In tests with the surrogate model predicting only a single time step (like in
the previous section), the issues with the geometry were not so severe. The
initial temperatures from the finite element model already contain informa-
tion about the geometry of the local model and about the expected form of
the temperature distribution. When predicting a full layer this information
is only available in the first step of each layer. If the geometry seen in the
local models changes within one layer (as it is the case in the setup in Figure
4.5 in the layers above the overhang) the surrogate model does not notice
the change.

To test the behavior of the surrogate model in overhang areas more thor-
oughly, it is applied to a printing geometry with a large overhang. To incor-
porate information about the geometry of the local model into the surrogate
different strategies are tested:

• the input data of the surrogate model is extended with a number
telling the location of the interface between printed material and pow-
der within the local model.

• a separate surrogate model (principal component basis and polyno-
mial chaos model) is built for the first few printing layers just above
the overhang.

• a surrogate model is built to ”correct” the predictions in the overhang
region. This model should predict the difference between the normal
surrogate model and the true temperature values in the overhang re-
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Figure 3.20: Normalized root mean square error at the test layers plotted against the number
of training layers for the polynomial chaos expansion. For this test we take a geometrical setup
with a horizontal bar. The solid lines show the average test error over the different random splits
in training and test data. The shaded regions depict the minimum and maximum values of the
error.

gion. These predictions are then added to the normal surrogate model
(this can be seen as a so called multi-fidelity approach).

The first strategy aims at giving the surrogate model additional input in-
formation in the hope that it ”learns” to act differently when there is an
overhang (or generally an interface). The second and third strategy are cho-
sen because the behavior of the model in the overhang region is substantially
different from the behavior in other regions (similar to laser active/inactive)
and a totally different model trained explicitly in this region might lead to
better results than enhancing the already existing model.

If there is a systematic error in the predictions of the normal surrogate model
predicting the error instead of the complete temperature data might be less
complex (especially for the PCA as the error tends to be smooth). This is the
idea behind the third strategy.

To see the performance of the three different approaches, the convergence
tests for the number of training layers conducted with the other geometries
before are repeated for the overhang data. The results of this test is shown in
Figure 3.20. The blue solid line shows the prediction error for the normal sur-
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rogate model used before as a reference. The red solid line shows the results
of the first approach, the yellow line the second with a separate model for
the interface and the violet line the third with the correction model. Again,
the minimum and maximum test errors for different random splits into test
and training data are indicated with the shaded areas.

The prediction errors for the first two strategies without additional model
are similar. They only decrease to about 10% which is quite a large error.
With a separate model for the interface or a correction model, much smaller
prediction errors can be reached (around 3% for both).

Applying an additional model brings two advantages. First, it improves the
predictions in the (difficult) overhang region because it was explicitly and
only trained on data of that area. Second, the prediction error in the other
regions are also reduced because the predictions there are not influenced by
the data of the overhang region. In that regard, the principal component
basis plays an important role. Because of the sharp, almost discontinuous
temperature profile in the overhang region, the variance explained by the
principal components decays much slower than for the rest of the data. This
means that many more principal components are needed to capture the most
important characteristics of the data and to be able to reconstruct it.

3.6.3 Selection of training layers

As already written before, the choice of the layers to train the surrogate
model can have a large impact on the prediction accuracy. In this section,
different strategies for the selection of training layers are compared. For the
comparison, data of the square geometry (3.7) are used. In this geometry
the temperature evolution is very similar over all the layers and there are
no complicated geometrical features like in the example with a corner and
a overhang. Still, the variation of the prediction error with respect to the
choice of the training layers is large as seen in Figure 3.17 where the training
layers were randomly chosen.

Instead of randomly selected training layers, in this experiment the training
layers are chosen from all the layers to be approximately equidistantly dis-
tributed. From preliminary tests, we have seen that the bottom layer might
have slightly different dynamics compared to the other layers. So it is not
clear weather to include this layer for training or not. For the convergence
test, four slightly different strategies are applied:

• equidistantly distributed training layers without the top and the bot-
tom layer;

• equidistantly distributed training layers without the top but including
the bottom layer;
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Figure 3.21: Normalized root mean square error of the surrogate model plotted against the
number of training layers. The training layers are selected with different (non-random) strategies.
For this experiment, data of the square geometry in Figure 3.7 is used.

• equidistantly distributed training layers including the top but without
the bottom layer;

• equidistantly distributed training layers including the top and the bot-
tom layer.

The normalized prediction error of the surrogate model trained on layers
chosen with these different strategies are shown in Figure 3.21. For very few
training layers it seems better to use only layers from the middle including
the highest layer. The models trained on layers including the one on the
bottom have a significantly higher error. For larger number of training layers
the opposite happens. The prediction errors of the models that do not use
the lowest layer are almost twice as high as when including the bottom layer
in the training set.

This slightly paradox result might be explained as follows. Since the temper-
ature in the lowest layer shows a different behavior than in the other layers,
training a surrogate model with data largely coming from the lowest layer
yields less accurate results. The lowest layer does not have very much pre-
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Figure 3.22: Histogram of the normalized prediction error of surrogate models trained on
different random selections of two training layers. The vertical red line indicates the prediction
error of a model trained on two layers with equal distance to each other and to the bottom and
the top of the geometry.

dictive power on the other layers. Contrarily, when the lowest layer is not
used for training it is included in the test set. The predictions on the lowest
layer generally have a larger error than on the other layers. Therefore, the
test error is strongly influenced by the prediction error on the lowest layer,
especially for a large number of training layers and small number of test
layers. That is why the test error of the strategies that do not include the
lowest layer increases for a growing training set.

To show that choosing the training layers equidistantly is a reasonable choice,
we compare the prediction error of a surrogate model trained on two layers
with equal distance to each other and to the first and the last, respectively,
with models trained on two randomly selected layers. The random selection
is repeated 100 times and a histogram of the resulting normalized prediction
errors is shown in Figure 3.22. The vertical red line indicates the prediction
error of the model trained on equidistant layers. That selection of training
layers achieved almost the smallest test error of all the random choices.

Concluding, it is not easy to determine a good choice of a training set before-
hand. In the example considered here, few equidistantly distributed training
layers from the inner of the geometry yield good results. This might be gen-
erally true for simple geometries. For geometries with more complicated
features the layers can not be chosen just equidistantly but the location of
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3.7. Marginal distributions

the features must be taken into account as well and selecting the training
layers becomes more difficult.

3.7 Marginal distributions

One important choice in the modelling process has not been discussed yet.
The polynomial chaos expansion relies on a basis of polynomials that are
orthogonal with respect to a weighting function. This weighting function
should be equal to the probability density function of the input data when
seen as a random variable (remember that the PCE was designed to model
uncertainties in systems with uncertain input parameters). When the distri-
bution of the different model input parameters is known, it is straightfor-
ward to choose the weighting function accordingly. The polynomial chaos
expansion profits from a good choice of the weighting function, especially
if it is not only applied for predicting new observations but also for uncer-
tainty quantification, like computing statistical moments or performing a
sensitivity analysis. In such cases the conclusions drawn from a polynomial
chaos model with wrong marginal distributions can be very misleading.

In our case it is not straightforward to determine the marginal distribution
of the model parameters. Even for the raw temperature values we could
only tell a minimum value (25 degrees) and maybe a rough estimate of the
maximum value based on our modelling experience. For the principal com-
ponents of the temperature values, however, we have no good information
about the distribution beforehand. The easiest thing is to assume a uniform
distribution based on the bounds we see from the data at hand. This involves
finding the minimum and the maximum value of each principal component
based on the given data and enlarging this range by a threshold of, say, 10
percent to be on the safe side. This strategy for determining the marginal
distributions has been applied throughout this project. As the results have
shown, it works fairly well as long as no principal component values outside
of this range are encountered. That is a further reason, why it is important
to have a good principal component basis that includes all relevant cases.

Figure 3.23 shows the values of the first principal component of all the ob-
servations of the initial temperatures in the square-like geometry. With the
strategy of choosing the marginal distributions outlined above, in this case
a uniform distribution between about -2 and 1 is found. However, this
is clearly not true here. The values of the first principal components are
aligned in bands representing certain local models in every layer.

A second thing to consider is if the model parameters are independent of
each other or if they are coupled. The principal components are not indepen-
dent from each other because they all depend on the same data set. Because
this dependence is difficult to describe rigorously, in this project the princi-
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Figure 3.23: First principal component values for all the observations of the initial temperature
data in the square geometry.

pal components are modeled as independent. Dependent marginals could
be achieved through the choice of so called copula functions. Copulas are
multivariate distributions over the unit cube with uniform marginals but cer-
tain dependencies between the different dimensions. With the right choice
of copulas, univariate marginal distribution can be coupled to form certain
joint distributions. The copulas are responsible for the dependence structure.
More (mathematical) details on this topic can be found in the UQLab man-
ual about specifying the uncertain inputs [9].

To see how the choice of assuming independent and uniformly distributed
model parameters influences the prediction accuracy, we conduct a small
test. The polynomial chaos expansion model is trained with different choices
of marginal distributions and copula types on two data sets. The first data
set comes from the simple square like geometry, the second from the geome-
try with two columns. We tested uniform marginals, like used in this project
otherwise, marginals inferred by the data through statistical inference and
non-parametric estimates of the marginals through kernel density estima-
tion. More details on how these procedures are implemented in UQLab can
be found in [9] and [19]. As copula types independent copulas and copu-
las inferred from the data through statistical inference are applied. The test
errors achieved with the different marginal and copula combinations are
presented in Table 3.1.

We see that the test errors for uniform marginals and independent copula
are among the smallest test errors for both data sets. The test errors for
the more realistic, dependent copulas (inferred from the data) are almost
twice as high in all cases. Also more realistic marginals do not give any
advantage, in most cases the test error is rather increased. Similar behavior
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3.8. Prediction of peak temperatures

marginal copula type test error test error
square geometry geometry Fig. 4.5

uniform independent 0.0068 0.0356
uniform inferred 0.0117 0.0373
inferred independent - 0.0600
inferred inferred - 0.0670

KS independent 0.0095 0.0347
KS inferred 0.0107 0.0564

Table 3.1: Test errors for different combinations of marginal distribution and copula type for the
square geometry (Figure 3.7) and the geometry with two columns (Figure 4.5). Marginal types
are uniform, inferred from the data by statistical methods and kernel smoothing (KS). The dash
indicates that it is not possible to fit a model.

has also been observed in [20], where the authors also apply polynomial
chaos expansion models to data sets for which the distributions are not
known. The authors in that paper suspect that the higher errors stem from
the very nonlinear transformation that must be applied to the orthogonal
polynomials when using certain type of copulas.

3.8 Prediction of peak temperatures

To determine the chance of significant metal evaporation and the build qual-
ity of printed parts, knowledge of the peak temperatures within each layer
is important. In Chapter 4, peak temperatures are calculated based on tem-
perature predictions of the surrogate model and are compared with peak
temperatures from the finite element simulations. In this section, we try to
build a surrogate model that predicts only the peak temperatures instead of
the temperatures at every node of the local model. In that surrogate model
no dimensional reduction for the output data is needed as the output con-
sists of only one value.

As input data for this surrogate model the local temperature data can not be
used like before because it is only available in the beginning of each layer.
In the other surrogate model, the input data is interpolated from the results
of the previous model. This is not possible here as only the peak tempera-
ture is predicted. Thus, temperature data from the global model are used
as input to the surrogate model here. Besides the input data, the new sur-
rogate model works very similarly to the one before. The polynomial chaos
expansion is applied and the dimension of the input data is reduced with
principal component analysis. To see if this surrogate model provides any
advantage compared to the one studied before, we compare the root mean
square errors of predictions of the peak temperatures of the two different
surrogate models. The results of this comparison for different numbers of
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3. Model Development

Figure 3.24: Comparison of the prediction accuracy between predicting only peak temperatures
and computing the peak temperatures from the predictions of the complete temperature fields.

training layers are shown in Figure 3.24. The temperature data for this ex-
periment are taken from the geometry with two columns (Figure 4.5).

We see that both surrogate models perform very similarly in terms of nor-
malized root mean square errors. Predicting only the peak temperature does
not give any higher accuracy while giving much less information at the same
time. This is probably because the principal component analysis finds the
peak temperature region as an important feature in the data and thus the
peak temperature is represented well within the principal component basis
and also in the reduced data. Therefore, the peak temperature is found with
high enough accuracy also when predicting the whole temperature field.
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Chapter 4

Results

In this chapter the results of a few simulation studies in different printing
scenarios are presented.

4.1 Printing a solid block

First, the performance of the surrogate model in the case of printing a solid
block of size 1× 0.99mm2 is shown. For the geometrical details, see Figure
3.7. The part is printed in 33 layers. Each layer contains 5 local models in
the multi-scale simulation.

To train the surrogate model, two layers in the inside of the domain are
selected. The surrogate model is then built with the principal component
analysis and the polynomial chaos expansion model like it is described in
Section 3.2. We take the first 16 principal components for reduction of the
input space of the model and the first 30 principal components for the out-
put space. Having trained the surrogate model, it is applied to find the
temperature evolution in the layers that were not used to train the model.

global simulation 45 min
local simulations 155 min

total time multiscale simulation 200 min

Table 4.1: Time needed for running the multiscale simulation for the solid block geometry.

global simulation 45 min
two layers of local simulations 9 min

training and evaluation of surrogate model 1 min
total time surrogate model 55 min

Table 4.2: Time needed for training and running the surrogate model for the solid block geom-
etry.
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Figure 4.1: Comparison of the temperature evolution provided by the surrogate model (solid
blue line) and the (exact) local model (dashed red line) at the point (x, y) = (0.5mm, 0.5mm).

An important goal of the construction of the surrogate model was to re-
duce the total simulation time compared to the multi-scale finite element
simulation. For training and evaluation of the surrogate model on the re-
maining layers about 30 seconds are needed. To get a fair comparison, the
time needed to compute the training data must be added. That is the time
the multi scale simulation needs to simulate the two layers on which the
surrogate model is trained and the time to run the global simulation. The
global simulation is required for the initial temperatures in the beginning of
every layer and for the boundary conditions of all the local models. These
timings are presented in the Tables 4.1 and 4.2. The surrogate model needs
about one fourth of the time of the multi scale model. This is a significant
reduction but not as much as wanted. The largest part of the simulation
time of the surrogate model falls on the global simulation. Depending on
where exactly the two layers are positioned in the component, it may not
be needed to run the whole global simulation and the time needed by the
surrogate model could be reduced further.

In Figure 4.1 you can see the temperature evolution over the whole simula-
tion time at the point (x, y) = (0.5mm, 0.5mm). The results of the multi-scale
simulation (dashed red line) and the values of the surrogate model (solid
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Figure 4.2: Comparison of the temperature evolution provided by the surrogate model (solid
blue line) and the (exact) local model (dashed red line) at the point (x, y) = (0.5mm, 0.5mm)
for the first pass of the laser over this point.

blue line) are compared there. The temperature data from the surrogate
model is merged together with the data from the global model (including
the cooling phase at the end of each layer). This shows that the surrogate
model fits nicely into the multi-scale simulation framework. Every rise in
temperature characterises a new pass of the laser and, thus, a new layer.
The peaks get weaker with time because the observation point is covered by
more and more printed material through which the heat must be conducted.

Little to no difference can be seen between the true temperature curve of the
local model and the temperature curve of the surrogate model. Also when
zooming in to the first peak (when the laser first melts the powder around
the observation point) no difference between the two curves is visible, see
Figure 4.2.

Next, in Figure 4.3 the nodal temperatures of one local model are compared
with the corresponding surrogate model temperatures. The location of this
local model is in the uppermost printing layer but in other models the results
look very similar. We see that the absolute difference, which is equivalent to
the error of the surrogate model, is at most about 15 degrees Celsius. The
largest deviations are found right in front and below the melt pool. In the
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Figure 4.3: Comparison of the temperature profile of a local and a surrogate model in the
uppermost printing layer.
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(a) Peak temperature computed from the surrogate model
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(b) Absolute difference in peak temperature with respect to the true values from the finite
element model.

Figure 4.4: Comparison of the peak temperatures in the whole printing part between surrogate
and finite element model for the solid block geometry.
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Figure 4.5: Sketch of the two-column structure.

other locations the errors are much smaller.

An important outcome of thermal simulations is the peak temperature in dif-
ferent regions of the printed component. Therefore, we determine the peak
temperatures during the complete simulation time for the surrogate model
and the finite element model. In Figure 4.4, first the peak temperatures
of the surrogate model are depicted and second the absolute differences in
the peak temperature between the surrogate model and the finite element
model. In the peak temperatures one sees well where the different layers are
and where the laser moves. The errors in the peak temperatures are mostly
small except for one spot in the lower right corner where the error is as
large as 120 degrees Celsius. In the other regions the error is mostly about
20 degrees Celsius which is not large compared to the peak temperatures of
more than 2000 degrees Celsius. In other experiments we have seen that the
first layer is often the cause of increased errors, which is what we see here as
well. What can be seen here also is that the prediction error always increases
towards the end of the layer. This is probably due to error accumulation (cf.
Section 3.6.1).

Summarising, for this geometry very good results are obtained from a sur-
rogate model trained only on simulation data from two layers of the multi-
scale model. The accuracy of the temperature data computed with the sur-
rogate model is good and the computational resources needed are much
smaller than for the complete multi-scale model.

4.2 Printing a two-column-structure

Next, we test the surrogate model on a more complicated geometry. The part
that was printed in the last section is simple in the sense, that it had clear
straight edges and it is printed everywhere, meaning there are no wholes in
the component. On that simple part the surrogate model performed fairly
well. In this section we try to simulate the printing of the geometry in Fig-
ure 4.5. The part is 4 mm long and 1.5 mm high. This gives 50 layers to be
printed and 20 local models in every layer. This geometry is very similar to
the structure used in Chapter 3, but it has an additional horizontal bar on
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(a) Peak temperature computed from the surrogate model.
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(b) Absolute difference in peak temperature with respect to the true values from the finite
element model.

Figure 4.6: Comparison of the peak temperatures in the whole printing part between surrogate
and finite element model for the geometry in Figure 4.5.
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Figure 4.7: Sketch of the two-column structure with the separate overhang model indicated in
red.

top that connects the two columns at the left and right. As there is a region
that is not printed in the middle, two different surrogate models are trained.
One model where the laser is active and where physical printing is happen-
ing and one model, where the laser is not active. These two models are
trained on two different data sets (the procedure is described and justified
in Chapter 3). In this experiment, we train the models on 10 of the totally 50
layers. Then, the computational effort for training the surrogate model is, in-
cluding the global simulation, a bit more than one fourth of the multi-scale
simulation model. Twenty input and thirty output dimensions are used for
the polynomial chaos expansion model. The other model parameters are the
same as before.

To see the quality of the surrogate model in predicting the peak tempera-
tures, like before, the peak temperatures over the whole printing geometry
are plotted and compared to the respective values of the multi-scale simula-
tion. These results are shown in Figure 4.6. In the first plot we see the peak
temperatures predicted by the surrogate model. One can see well where the
laser was active and where it was not. We also see that below the bar, which
connects the two vertical pillars, the heat dissipates into the powder to some
extent. This is probably the most difficult part for the surrogate model to
predict because it has no information about the geometry and about the
physical processes that play a role there. We also see that the errors in the
peak temperature are very large just below the horizontal bar.

This aspect has already been addressed in Chapter 3. There, the proposed
solution was to use an additional surrogate model for the overhang region.
In convergence studies this showed good results in decreasing the prediction
errors, especially in the overhang region. Thus, also here we try to use this
concept. For the eight layers directly on top of the overhang, the region
in the center is predicted with a separate model, which is trained on data
only from that region (see Figure 4.7). The other two surrogate models
for the rest of the printed region and for the region where the laser is not
activated remain the same as in the previous test case. In total nine layers
are used to train the surrogate models (compared to ten before). To see
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Figure 4.8: Absolute difference in the peak temperatures between the surrogate model with
an additional model for the overhang region and the true values from the finite element model
printing the same structure as in Figure 4.6.

how well this approach works, the peak temperatures are computed based
on the temperature predictions of the three different surrogate models. The
absolute differences in peak temperatures between the surrogate and the
finite element model are shown in Figure 4.8. Compared to Figure 4.6b,
the maximum errors of the predicted peak temperatures are much lower.
Especially the region with large errors around the overhang is much smaller
in the approach with a separate overhang model.

4.3 Printing a T-structure

As a last test case, we simulate the printing of a geometry that resembles a
”T” (see Figure 4.9). Similar to the previous geometry, we need two different
models for the regions with and without activated laser. In addition, a sep-
arate model for the lower part of the crossbeam of the T is used to achieve
a reduction of the error in this critical area. The geometry is 50 layers high
and every layer consists of 15 local models. The surrogate model is trained
on ten layers. For the polynomial chaos expansion model the input space is
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Figure 4.9: Sketch of the T-structure.

reduced to 20 dimensions and the result space to 30.

In Figure 4.10, the peak temperatures of the simulation are shown. As ex-
pected, when comparing the peak temperatures of the surrogate model with
the ones of the multi-scale finite element simulation we see good agreement.
Also in the said region below the crossbeam, the errors are not too large.
The largest errors are in two spots at the edge of the structure in the lowest
layer.
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(a) Peak temperature computed from the surrogate model
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Figure 4.10: Comparison of the peak temperatures in the whole printing part between surrogate
and finite element model for the geometry in Figure 4.9.
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Chapter 5

Conclusions and Outlook

The goal of this thesis was to build a surrogate model in a multi-scale sim-
ulation framework for selective laser melting in order to reduce the com-
putational resources needed for running the simulation. To this end, we
have proposed a combination of dimensional reduction using principal com-
ponent analysis and surrogate modelling with polynomial chaos expansion.
We have also shown a way to apply the proposed surrogate model for pre-
dicting the temperature evolution in complete printing layers (where the
temperature results of consecutive local model must be combined). Reason-
able values for the parameters of the surrogate model have been determined
in convergence tests. The surrogate model has then been validated on differ-
ent printing geometries and it has been found that the proposed approach
works well on simple geometries like printing a square. There it showed
good results in predicting the temporal evolution of the two dimensional
temperature field under the influence of the moving laser beam. The com-
putational costs of training and evaluating the surrogate model are very
low. Most of the time needed to construct a surrogate model for a new
printing setup is spent in acquiring data to train the surrogate. When com-
paring the simulation time of the local finite element simulations and the
time needed for the surrogate model including training and evaluation, a
significant speedup is observed.

For complicated geometries with holes and overhang structures, we have
proposed to train the surrogate models independently on different regions
of the component geometry to increase the overall prediction accuracy. Still,
this needs to be further investigated. In this aspect, temperature data from
the global finite element simulation might be of help. The global model data
is not as accurate as the local data but it still contains the relevant physical
features of the temperature evolution. With global model data the surrogate
model might be able to learn the necessary geometrical features. The global
temperature data implicitly contains information about the geometry. Of
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course, this is the same for the local model data, however, only the global
data can be used as input to the surrogate model because the initial tem-
peratures of the local finite element models are not known when using the
surrogate model. Also with this approach different surrogate models for
regions with different characteristics should be used.

In the course of this thesis the local model training data has always been
generated in whole layers since this is the natural way it comes from the
finite element model (as described before, the local models can not be run
independently). For surrogate modelling it would be beneficial to have train-
ing data more evenly spread over the whole geometry than only from a few
complete layers. Therefore, we would propose to look into the possibility
of running local finite element models inside of layers without the need to
solve their predecessors. The missing initial conditions from the previous
local FE model could be substituted by interpolation from the global model
(the boundary conditions come from the global model anyway). It is impor-
tant that the surrogate model can learn the evolution of the physical system
from the training data. To achieve this goal it does not matter if the local
finite element models are solved using initial conditions from the global
model or from the previous local FE model.

The most promising approach to improve the surrogate model in our view is
the construction of a good principal component basis. As mentioned before,
having a good PC basis is key for the surrogate model to provide accurate
results. The basis should include all kind of temperature conditions that
can appear during the simulations. Improving on the PC basis will most
certainly also help with the problems in overhang regions.

As a further step it should be evaluated if the polynomial chaos model needs
to be trained afresh for every new usage of the surrogate model. It might
be possible to make a more general model that is only partially adapted to
new training data. This would be beneficial because for training the general
model, a lot of computational resources could be invested.

Assessing the quality of the surrogate model predictions currently causes
difficulties. It would be good to have a method of finding the uncertainties
in the predicted temperature profiles to know if they should be trusted or if
more training data should be gathered.

The proposed surrogate model is restricted to two dimensional geometries.
This restriction is due to the finite element simulation that is also only avail-
able in two dimensions. Extending the surrogate model to three dimensional
geometries should be straightforward. The steps of the 2D modelling pro-
cess can be applied to three dimensional temperature data as well. Of course,
interpolation and other routines specific to the two-dimensional setup must
be adapted. The dimensional reduction and the polynomial chaos model
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work in the same way, possibly the number of principal components needs
to be changed according to convergence tests.

The surrogate model presented in this thesis can be seen as a proof of con-
cept that surrogate models can help to reduce the computational costs of
finite element simulations in additive manufacturing while retaining good
accuracy. It can certainly be used as a starting point to further projects ad-
vancing the use of simulations of additive manufacturing.
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Appendix A

Guideline for surrogate model usage

In the appendix a short explanation on the different steps involved in apply-
ing the surrogate model is given.

1. Set up the multi-scale finite element simulation for the geometry you
want to solve and run the local and global simulation.

2. With the python scripts postproc surrogate.py and postproc global.py in
the directory scripts, extract the important temperature data from the
odb files of the finite element simulation. The local data is stored in
csv files separated into boundary, initial and result temperature at the
nodes of the local models. From the global model, temperature values
at all the nodes for all the global simulation steps (heating and cooling
steps) are stored. For the construction of the surrogate model only the
data from the local models is needed.

3. Now, the surrogate model can be constructed in Matlab. Generally, the
following steps can be followed:

• Read in the local data;

• If a complicated geometry with regions with different surrogate
models is used, define which local model is situated in which
region;

• Choose the training and test layers for the surrogate model;

• Compute the principal component basis (for the different regions)
and apply the transformations to get the reduced training data;

• Choose the parameters for the polynomial chaos expansion and
train the model.

4. When the surrogate model is built it can be applied to predict the tem-
perature evolution on the local models in the test layers. To simplify
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A. Guideline for surrogate model usage

this step a Matlab function is provided that evaluates the surrogate
models on all the local models.

5. Finally, the temperature data from the surrogate model can be used
like the temperature data from the local finite element models.

It might be helpful to follow the examples in the files surrogate model square.m
and surrogate model two pillar.m in the directory Matlab/examples. The former
uses the (simple) square geometry with only one surrogate model, the latter
the geometry with two pillars and three different surrogate models for the
regions with activated and deactivated laser and the overhang. All the steps
outlined above are present in these examples. Additionally, it is shown how
to combine the temperature data with the data from the global model to plot
the temperature evolution at certain nodes.
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Appendix B

Boundary errors

As mentioned earlier, the uncertainties or the errors in the predictions of the
surrogate model can not easily be guessed. There are methods to get a leave-
one-out error estimate for the polynomial chaos metamodel. These error
estimates are given in terms of the reduced principal component basis and
it is difficult to transform them to get estimates in the full temperature space.
The error estimates are estimates for the global error. It is useful to know
the global error of the surrogate model but this still leaves us without knowl-
edge about the accuracy of the temperature predictions in each local model,
or generally, in different parts of the geometry, where accurate temperature
values might be very important for post-processing of the simulation results.

During the presentation of this thesis, an idea of how to estimate the local er-
rors came up. The boundary temperatures of every local model are given as
initial values to the local simulations. In the finite element simulation of the
local model these boundary values are used to solve the differential equa-
tions and of course the prescribed values are met exactly. In the surrogate
model, the boundary temperatures are also given as input values and they
are used for predicting the result temperatures. Still, the predicted values
at the boundary do not equal the initially given boundary values in general.
The more accurate the temperature prediction of the surrogate model, the
closer the result temperatures at the boundary nodes are to the given bound-
ary values. The idea is that the reverse might also be true to some extent.
Namely, if the predicted temperature values of the surrogate model at the
boundary nodes match the boundary temperatures well, also the tempera-
ture predictions at the interior nodes should be accurate. At least, boundary
temperatures being far off from the true values might be a strong indicator
that the whole temperature prediction is not really accurate.

In Figure B.1b, the mean square errors of all the surrogate models on the
geometry 4.5 are shown. The mean square errors of only the nodes at
the boundary of the surrogate model are shown in Figure B.1a. The high
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B. Boundary errors
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(a) Mean square error on the boundary nodes.
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Figure B.1: Mean square error of all the local surrogate models on the geometry 4.5.
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peaks around surrogate model number 660 are due to the overhang struc-
ture. There, the errors are high also in the boundaries. For higher local
model numbers, the errors in the boundary drops faster than the total error
but there seems to be some correlation between the two errors in this setting.
For small local model numbers, the predictions have a very small error both
in the interior as on the boundary. In absence of a better approach on how
to quantify the local prediction errors, looking at the errors on the boundary
nodes seems to be reasonable (at least to get a qualitative picture).
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