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Abstract 

Additive Manufacturing methods like Selective Laser Melting are modern and 

continuously growing manufacturing techniques specialized in the production of 

highly complex components. With its layer-by-layer approach Selective Laser 

Melting is very well suited for prototyping as well as production of intricate 

geometries. Due to the high temperature gradients and fast cooling rates the 

parts are expected to have very fine microstructure. The parts are also assumed 

to have a high degree of anisotropy caused by the systematic temperature 

gradients present during solidification. To predict the response of SLM 

manufactured parts, simulations have been developed. In this project one such 

simulation based on the algorithm of Cellular Automata for SLM single tracks was 

used for microstructure prediction. The generated microstructure data was then 

analyzed using the Principal Component Analysis (PCA) and validated with 

experimental data. This analysis was split into two main parts, namely the three- 

and the two-dimensional analysis. For the three-dimensional analysis the grain 

shape was quantified using PCA. The two-dimensional quantification determined 

the grain shape as well as the crystallographic grain orientation using Texture 

plots. Afterwards, a sensitivity analysis of Microstructure to Process Parameters 

was conducted, and the two-dimensional results were compared with 

experimental data.  
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Motivation 

 

Additive Manufacturing techniques like Selective Laser Melting have proven to 

be able to produce very complex parts, opening a new dimension in the design 

space of part manufacturing. The SLM-process employs a layer-by-layer strategy 

where a part is created one layer at a time.  

The process starts by applying a powder layer to the substrate plate. A laser 

source then melts the selective areas of the powder layer. The molten areas then 

combine with the underlying material to form the part. This is also where the name 

“Additive Manufacturing” comes from since material is only added to the part and 

never removed. This is a big contrast to conventional manufacturing techniques 

where the process usually starts with a block of raw material, that is then worked 

into shape by removing material. This leads to higher waste since most of the 

removed material can’t be reused immediately. Because of these benefits 

Selective Laser Melting finds good use in prototyping. Due to its slow building 

rates SLM is not suited for large batch size production. 

The layer-by-layer approach also causes the production rate of Selective Laser 

Melting to not be dependent on complexity of the geometry. The downside to this 

are slow building rates for very simple dense parts. Adding to that, another 

drawback are the high acquisition and material costs which make it difficult for 

new companies to incorporate Selective Laser Melting into their manufacturing 

process. Therefore, a deep understanding and an optimal virtual depiction of the 

entire process using simulations is of high importance. This would allow 

companies to decide in advance whether they want to use Additive Manufacturing 

and in general make it more attractive as a manufacturing alternative. 
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In this Semester Project an existing single track microstructure simulation for 

Selective Laser Melting based on Cellular Automata was used for a sensitivity 

analysis of microstructure to process parameters. To this end, a fully automated 

tool was created in MATLAB that incorporates thermal simulations from Abaqus 

with microstructure simulations in MATLAB. Subsequently, the generated 

simulation data was evaluated with a principal component analysis to get a 

representative quantification of the three-dimensional grain structure. Afterwards, 

a texture analysis of multiple sections in the laser track was conducted using the 

MATLAB toolbox MTEX. Lastly, experimental data was also analyzed using the 

principal component analysis and then compared to the simulation results. 
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Theoretical Foundation 

 

In this chapter an overview of the properties of Hastelloy X will be given. 

Afterwards, the general Selective Laser Melting process will be explained in 

detail. Lastly, the algorithm used for the generation of the microstructure 

prediction will be described. 

 

2.1 Hastelloy X 

Hastelloy X is a solid solution strengthened Nickel based superalloy. It is a 

commonly used material in gas turbine engines as well as in the chemical process 

industry. This is mostly due to its high oxidation resistance and high strength at 

elevated temperatures [3]. Hastelloy X was used because it can withstand the 

high temperature gradients and fast cooling rates of the Selective Laser Melting 

process. After solidification a strongly columnar dendritic microstructure is 

observed. This causes Hastelloy X parts produced with Selective Laser Melting 

to have higher yield strength and hardness than its conventionally manufactured 

counterparts [4,5]. A downside is the material’s susceptibility to cracks in high 

temperature manufacturing, also known as hot-cracking. This can be partially 

overcome by employing a post processing technique called hot isostatic   

pressing (HIP) where the part is pressed together with high pressure at an 

elevated temperature to close pores and cracks [3]. 
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2.2 Selective Laser Melting 

2.2.1 General procedure 

Selective Laser Melting is a powder based additive manufacturing technique. A 
schematic representation of the process can be found in Figure 2.1.  

First, a 3D-CAD model of the part to be manufactured is created. Afterwards, that 
model is sliced into equally sized layers using a Slicing program. These slices act 
as the main building blocks, in which specific areas are later molten into a 
connected part. With this the first layer is ready to be applied onto the build 
platform. To this end the metal powder supply platform is raised and the build 
platform is lowered by the desired layer thickness. Then the recoater arm sweeps 
over the build platform covering it in a powder layer with the desired layer 
thickness. Any excess powder is swept into a container and stored for later use. 
With the layer applied the laser source starts to melt the selective areas that were 
predefined by the sliced 3D-CAD model. The laser’s position is controlled by a 
scanning mirror that can be rotated to ensure proper positioning. After the laser 
has molten all areas in this layer the process is paused to give the material 
enough time to cool down. When everything has sufficiently cooled down the 
cycle starts anew by raising the metal powder supply and lowering the build 
platform by another layer thickness. This is repeated until the part is finished. The 
not yet molten powder is then sifted and stored in a powder container. [1] 

 

 

 

 

Figure 2.1: Schematic representation of the general Selective 
Laser Melting process [2] 
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2.2.2 Mechanical properties 

The mechanical properties of Selective Laser Melting manufactured parts are 

highly dependent on the chosen process parameters. They are also expected to 

be very anisotropic due to the columnar microstructure and strong texture that is 

formed during SLM solidification. The high temperature gradients and rapid 

cooling rates can cause materials to start cracking during solidification. A high 

energy density leads to the presence of key-hole pores [3]. The cracks and pores 

are two effects that negatively impact the mechanical properties of SLM 

manufactured parts. As mentioned in the material section defects, like cracks and 

Lack of Fusions defects, can be partially circumvented using post processing 

techniques like hot isostatic pressing [3].  

 

2.3 Microstructure simulation 

There are two main types of numerical methods used for simulation of complex 

dendritic solidification processes, namely the stochastic and the deterministic 

methods. A commonly used deterministic method is the phase field modeling 

method, in which a field variable smoothly varies over the interface between 

different phases [8]. This method has been used to model the growth of dendrite 

structures in pure materials and alloys [10]. The downside to deterministic 

methods like the phase field method are their high computational costs. Because 

of the high computational effort needed, these approaches are usually restricted 

to small length scale and small number of grains [8]. To overcome these issues 

stochastic methods, offer a good alternative. Due to the nature of stochastic 

methods their computational effort required is in general lower than the required 

effort of deterministic methods. Which is why the microstructure prediction of 

Selective Laser Melting produced parts is commonly based on stochastic 

methods [8]. One of the most popular stochastic methods is the Cellular Automata 

(CA) algorithm, which will be explained in detail in the following chapter.  

In this project an existing Selective Laser Melting single track microstructure 

simulation created by J. Tang was used. This simulation is based on the 

principles of Cellular Automata. A schematic representation of the general 

microstructure simulation Process can be found in Figure 2.2.  
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2.3.1 Cellular Automata (CA) 

Cellular Automata are dynamic systems in which time, space and states are 

discrete [13].  

First, the simulation space is subdivided into equally sized cells. A finite number 

of states can then be assigned to each cell. The states that were used in the 

simulation are: phase, undercooling, center point of the Update Rule and 

crystallographic orientation. These states cannot be changed during a time step. 

One of the most important aspects of Cellular Automata is its locality since each 

cell can only interact with a predefined number of neighboring cells [13]. This link 

between the neighboring cells is called the Update Rule.  

 

2.3.2 Update Rule 

To calculate the states of a cell at a given time step, Update Rules were 

developed, which provide a link between the states of the current cell and the 

states of the neighboring cells. The neighboring cells of a center cell are 

determined based on so called Neighborhood Rules. In this sub-chapter one 

Figure 2.2: Schematic representation of the general Cellular Automata algorithm 
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Update Rule and two Neighborhood Rules will be presented: the Moore 

Neighborhood Rule, the Von-Neumann Neighborhood Rule and the decentered 

octahedron Update Rule.  

The Moore and Von-Neumann Neighborhood Rules are in general very similar. 

The Von-Neumann Neighborhood Rule defines that only the six closest cells have 

an influence on the center cell. This Neighborhood Rule can also be used as an 

Update Rule. In the words of Selective Laser Melting, if the center cell changes 

its phase state from 0 (Interface) to 1 (Solid) then the predefined neighbor cells 

that are not fully solidified or not already in the interface change their phase state 

to interface. The Moore Neighborhood Rule follows a similar pattern. In the Moore 

Neighborhood Rule the only difference is that all neighboring cells have influence 

on the states of the center cell. So, for the Moore Neighborhood Rule all 26 

surrounding cells count as neighbor cells. If these two Neighborhood Rules are 

used as Update Rules, they form a very basic Cellular Automata algorithm. These 

Update Rules are not very well suited for simulation of solidification processes in 

Selective Laser Melting since they can’t capture the influence of many physical 

properties like the preferred growth direction of a grain during solidification or its 

crystallographic orientation. Therefore, these Update Rules were not 

implemented in the Cellular Automata algorithm that was used in this project. A 

two-dimensional schematic representation of the Moore and Von-Neumann 

neighborhood Update Rules can be found in Figure 2.3.  

 

 

 

 

 

 

 

In decentered octahedron Update Rule a virtual octahedron is created at the 

center of each nucleating cell. This octahedron will have the same orientation as 

the grain’s crystallographic orientation. It grows with increasing solidification of 

the cell. Once the cell is fully solidified the octahedron stops growing and the cell 

state is set to Solid. If this virtual octahedron captures a neighboring liquid cell’s 

center point it will instantiate a new octahedron centered on the connection line 

between the two center points. This approach is very well suited for 

microstructure simulation during solidification since the octahedron can imitate 

physical properties like the aforementioned preferred growth direction of grains 

Figure 2.3: Two-dimensional schematic representation of the Update Rules: (a) Von-Neumann 
and (b) Moore neighborhood for cubic cells  
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and their crystallographic orientation. A schematic depiction of this method can 

be found in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

2.3.3 Nucleation and Grain Growth 

Implementation of nucleation and grain growth is based on [8].  

In Cellular Automata, nucleation needs to be predefined for the algorithm to work. 

To this end, in the initialization of the simulation potential nucleation sites are 

chosen. These sites are randomly picked from all possible cells with the amount 

of potential nucleation sites calculated as:  

𝑁𝑣 = 𝜚𝑣 ∗ 𝑉 

 

Where 𝜚𝑣 is the nucleation density for bulk and 𝑉 represent the total bulk liquid 

volume. Each of these potential nucleation sites is then assigned a critical 

undercooling, which follows a gaussian distribution with mean value and standard 

deviation (Δ𝑇𝑚𝑎𝑥 and Δ𝑇𝜎). This critical undercooling gives the cell a value at 

which it will start nucleating to form a grain. If a cell is chosen multiple times as a 

nucleation site, then the smallest selected critical undercooling will be chosen 

instead [8]. 

(2.1) 

Figure 2.4: Schematic representation of the decenetered octahedron Upate Rule [8]. 
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Nucleation takes place once a nucleation cell has reached an undercooling that 

is greater or equal to its critical undercooling. Afterwards this cell is assigned a 

randomly picked crystallographic orientation and a virtual octahedron of size 0 is 

generated at the center point. That octahedron is then oriented to match the 

crystallographic orientation of the cell. 

Once the nucleation cells have been activated grain growth starts by setting their 

phase state variable to 0 (Interface). Grain growth is governed by the dendrite tip 

growth kinetics [8] so a definition for dendrite growth velocity needs to be 

determined. As proposed by [16] the dendrite growth velocity 𝑣 was calculated 

as follows:  

𝑣(Δ𝑇) = 𝜂2 ∗ Δ𝑇2 + 𝜂3 ∗ Δ𝑇3 

 

Where 𝜂2 and 𝜂3 are coefficients with units 
𝑚

𝑠∗𝐾2 and 
𝑚

𝑠∗𝐾3 and Δ𝑇 is the current 

undercooling.  

During grain growth the decentered octahedron Update Rule is performed in 

every timestep and on every interface cell. The size of the octahedron 𝐿𝑣 is 

calculated as: 

𝐿𝑣(𝑡) =
1

√3
∫ 𝑣(Δ𝑇(𝜏))𝑑𝜏

𝑡

𝑡𝑣

 

Where 𝑣 is the dendrite growth velocity calculated using Equation (2.2), 𝑡 is the 

current time step and 𝑡𝑣 is the time at which this cell started to solidify. Once a 

liquid cell’s center point is enveloped by an octahedron it will start to solidify as 

well, changing its phase state to 0 (Interface) and creating its own octahedron 

with the inherited crystallographic orientation of the capturing cell. These two cells 

will be considered as belonging to the same grain.  

Implementation of the decentered octahedron Update Rule follows the algorithm 

proposed by [17]. If we take the two cells 𝜇 and 𝜅 shown in Figure 2.4. with center 

points 𝐶𝜇 and 𝐶𝜅, respectively. 

The envelop size of cell 𝜇 at time step 𝑡 is given as: 

𝐿𝜇(𝑡) = 𝐿𝜇(𝑡𝜇) +
1

√3
∫ 𝑣(Δ𝑇(𝜏)) ∗ 𝑑𝜏

𝑡

𝑡𝜇

 

Where 𝐿𝜇(𝑡𝜇) is the initial size of the envelope at cell 𝜇, created at the time it was 

captured 𝑡𝜇. 

(2.2) 

(2.3) 

(2.4) 
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To initialize a captured cell 𝜅 the procedure (Update Rule) based on [8] and [17] 

is used: 

Transformation of coordinate of cell center 𝜅 to local coordinate system 

associated with the envelop: 

𝒙𝜅 = 𝑴𝑇 ∗ (𝑿𝜅 + 𝑿𝐶𝜇) 
 

Where 𝑿 and 𝒙 represent the coordinates of the cell center in global and local 

coordinate systems and 𝑴 the orthogonal coordinate rotation matrix given by the 

Euler angles of 𝜇.  

Determine in which octant 𝐶𝜅 is located and calculate the nearest octahedral face 

𝐹 to that center point. 

Calculate the distance between 𝜅 and the closest face with normal 𝒏𝐹 as:  

 

𝑑 =
1

√3
(ℎ𝑥1

𝜅 + 𝑘𝑥2
𝜅 + 𝑙𝑥3

𝜅 − √3𝐿𝜇(𝑡)) 

 

where √3𝐿𝜇(𝑡) is the half-diagonal length of the envelope of cell 𝜇 and [ℎ, 𝑘, 𝑙] are 

the Miller indices of the closest octahedral face. 

Project the cell center of 𝜅 onto 𝐹 denoted as the point 𝑎:  

𝒙𝑎 = 𝒙𝜅 +
1

√3
|𝑑|𝒏𝐹 

 

Ascertain the closest corner of the face 𝑠1. 

 

 

Calculation of the projection of point 𝑎 onto the edges 𝑠1𝑠2 and 𝑠1𝑠3. These 

projections will be denoted as 𝐼 and 𝐽. 

 

𝐼𝑠1
⃗⃗⃗⃗ =

(𝒙𝑠2 − 𝒙𝑠1) ∗ (𝒙𝑎 − 𝒙𝑠1)

‖(𝒙𝑠2 − 𝒙𝑠1)‖2
(𝒙𝑠2 − 𝒙𝑠1) 

 

𝐽𝑠1
⃗⃗⃗⃗ =

(𝒙𝑠3 − 𝒙𝑠1) ∗ (𝒙𝑎 − 𝒙𝑠1)

‖(𝒙𝑠3 − 𝒙𝑠1)‖2
(𝒙𝑠3 − 𝒙𝑠1) 

 

1.) 

2.) 

3.) 

4.) 

5.) 

6.) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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New envelope size defined by two auxiliary variables: 

 

𝐿12 =
1

2
(𝑀𝑖𝑛[𝐼𝑠1, √3𝑑𝑐𝑒𝑙𝑙] + 𝑀𝑖𝑛[𝐼𝑠2, √3𝑑𝑐𝑒𝑙𝑙]) 

 

𝐿13 =
1

2
(𝑀𝑖𝑛[𝐼𝑠1, √3𝑑𝑐𝑒𝑙𝑙] + 𝑀𝑖𝑛[𝐼𝑠3, √3𝑑𝑐𝑒𝑙𝑙]) 

 

The size of the new envelope edges is then calculated as: 

 

𝐿𝜅 = √
2

3
𝑀𝑎𝑥[𝐿12, 𝐿13] 

 

With the new octahedron size the center point of this octahedron can be 

computed as: 

 

𝒙𝐶𝜅 = (𝜆𝜇 − 𝜆𝜅)
𝒏𝑂𝑆1

‖𝒏𝑂𝑆1‖
 

 
where 𝑥𝐶𝜅 is the coordinate of the new grain octahedron and 𝒏0𝑆1 represents the 

vector connecting 𝑜 and 𝑠1. The new center point’s global coordinates can then 

be calculated as: 

  

𝑿𝐶𝜅 = 𝑿𝐶𝜇 + 𝑴 𝒙𝐶𝜅 

With this procedure a new envelope is created at 𝜅. 

 

 

  

 

  

 

7.) 

8.) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Methods 

In this chapter an overview of the methods used for the Sensitivity Analysis as 

well as for the microstructure quantification will be shown. First, the sampling 

strategies that were considered in this project will be explained. Afterwards, a 

detailed introduction to the methods used in the microstructure quantification will 

be given. 

 

3.1 Design of Experiments (DOE) 

To capture the whole complexity of the microstructure sensitivity to process 

parameters multiple Design of Experiments approaches were used. The DOEs 

considered in this project are the One-Factor-At-A-Time, the Full Factorial, and 

the Latin Hypercube sampling.  

3.1.1 One-Factor-At-A-Time Design (OFAAT Design) 

The One-Factor-At-A-Time sampling approach counts to the family of the 

systematic sampling approaches. Systematic approaches have a predefined 

sampling with no stochastic components. A schematic representation of a 

OFAAT sampling can be found in Figure 3.1.  

OFAAT represents a very intuitive way to think about a problem. Contrary to most 

sampling strategies the OFAAT approach only varies one factor at a time. With 

this it is possible to conduct a sensitivity analysis of the system’s dependence on 

a given parameter. If a system has multiple factors and is complex enough, then 

this strategy becomes obsolete, since it can only ever consider the effect of a 

single factor on the system at a time. Causing the design to be blind to the 
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interplay of different factors. Therefore, in most cases it is not efficient to use the 

OFAAT sampling techniques. As evident from Figure 3.1. finding an optimum 

with this sampling is very difficult. [18] 

 

 

 

 

 

 

 

 

 

 

 

Because of the high dependency on the initial guess as well as the lack of 

information of the interplay between different factors this approach was not further 

considered in this project.  

 

3.1.2 Full Factorial Design (FF Design) 

The Full Factorial Design also belongs to the family of systematic sampling 

strategies. It is very similar to the OFAAT approach. The main difference is that 

in the Full Factorial Design multiple factors are changed simultaneously. 

To do a Full Factorial Design several values need to be defined for each 

parameter. These discrete values, also referred to as the levels of the factor, will 

be the only values the parameter can take. If, and only if, every factor has the 

same number of levels then the design is called symmetric factorial design [20] 

and the number of combinations is given as:  

#𝐸 = 𝑛𝑘 

Here 𝑛 are the levels of each factor and 𝑘 are the number of factors. As evident 

from Equation 3.1 the number of experiments scales exponentially with 

increasing 𝑘. Therefore, this sampling strategy is only efficient for small 𝑘. It is 

recommended to keep 𝑘 < 7. 

Figure 3.1: (left) One-Factor-At-A-Time with the design variables: Time and Temperature [18]  
(right) Schematic representation of optimization using One-Factor-At-A-Time approach [19] 

(3.1) 
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For an asymmetric factorial design, the general number of combinations is given 

by: 

#𝐸 = ∏𝑛𝑖

𝑘

𝑖=1

 

 

Here 𝑛𝑖 represents the number of levels corresponding to factor 𝑖. 

 

3.1.3 Latin Hypercube Design (LH Design) 

Contrary to the already presented sampling techniques the Latin Hypercube 

Sampling count to the family of the stochastic sampling strategies. Therefore, the 

sampling achieved with LH is different every time. In the LH sampling all factors 

are varied at a time, making it possible to capture the entire complexity of the 

system.  

Just like the FF design the LH sampling starts by defining the levels (𝑛) of each 

factor. Importantly, all factors must have the same number of levels for the LH 

sampling to be applicable. Afterwards, a lower and upper bound is defined for 

each factor. The domain between the lower and upper bound is then subdivided 

into 𝑛 equally sized intervals. The LH approach is then going to generate a 

sampling in which every interval of every factor is only going to be sampled once. 

The value of the factor inside an interval is randomly generated. A schematic 

representation of the Latin Hypercube sampling using two factors and ten 

intervals can be found in Figure 3.2.  

As evident from the figure the sampling points are not allowed to share the same 

row or column. Since this is the only constraint on the generation of a LH 

sampling, optimization methods are used to increase the space filling properties 

of the design. One of the most popular optimization algorithms for improvement 

of the LH sampling is the Max-Min optimization, which maximizes the minimum 

distance between any two sampling points. This creates a good coverage of the 

entire design space [22]. 

 

 

 

 

(3.2) 
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3.1.4 Conclusion Design of Experiments 

For the Sensitivity Analysis of microstructure to Process Parameters it was 

decided that a Full Factorial Design would yield the best results. Because of the 

low number of process parameters (design variables) and levels, the number of 

simulations required for a full factorial design was feasible. Since the simulation 

was going to be validated using experimental data with discrete Process 

Parameters, the levels of the Full Factorial Design variables were also set to the 

experimental values. A table of the levels used for each Process Parameter can 

be found in Table 3.1.  

The Latin Hypercube Design is also a feasible sampling strategy, but it would be 

difficult to compare its microstructure results with the experimental data because 

of the stochastic nature of LH. Also, the asymmetry of the given experimental 

process parameter set suggest using an Asymmetric Full Factorial Design over 

a symmetric Latin Hypercube Design approximation. 

  

Laser Power [W] Scan Speed [mm/s] Layer Thickness [𝝁𝒎] 

150,175,200 700,900,1100 0,20,30,40 

 

Figure 3.2: Schematic representation of LHC-sampling using max-min optimization (a) and 
possible sampling not using an optimization scheme (b) [22]. 

Table 3.1: List of Parameters used for the Full Factorial Design of the microstructure sensitivity analysis to 
Process Parameters 
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3.2 Quantification of simulated Microstructure 

The microstructure is a very complex that is difficult to analyze. Therefore, to 

make any viable claims on a given microstructure, a sub-set of quantities must 

be defined. These quantities create a common ground for the quantification and 

comparison of different microstructures. In this project three of these quantities 

were considered: 

 

1. Grain Size / Aspect Ratio 

2. Spatial Grain Orientation 

3. Crystallographic Grain Orientation 

 

The grain size can be defined differently based on the given data set. If the data 

set only consists of a two-dimensional slice, then the grain size is set to the 

average grain area of the set. If the data is a full three-dimensional set, then the 

grain size equates to the average grain volume. To define the average aspect 

ratio of the grains, methods like the linear intercept method [24,25] or the Principal 

Component Analysis can be used. Both methods will be explained in the following 

sub-chapters.   

Spatial Grain Orientation is the quantification of the tilt angle of each grain. This 

quantity gives an intuitive understanding of how the grains are oriented in space. 

A main axis of each grain needs to be defined before the spatial grain orientation 

can be determined. This main axis is calculated to be the direction of highest 

variance, meaning longest direction of the grain. The method used for 

determination of Spatial Grain Orientation is the Principal Component Analysis.  

Contrary to the Spatial Grain Orientation the Crystallographic Grain Orientation 

is not a quantity of the grain’s geometry. It is a quantity that specifies the 

orientation of the crystal lattice inside the grain. This orientation is determined 

using the grain’s Euler angles. To quantify the Crystallographic Grain Orientation 

Inverse Pole Figures and Texture Plots utilizing the MATLAB Toolbox MTEX were 

used. A detailed explanation of the quantification of Crystallographic Grain 

Orientation will be given in the following chapters. 
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3.2.1 Linear Intercept Method 

The Linear Intercept Method is a technique based on the DIN EN ISO 643 [24] 

and the ASTM E 112 [25] norms. This technique is specialized in the 

quantification of grain size of two-dimensional data sets. It is very commonly used 

in quantification of experimental data. In the Linear Intercept Method, a grid of 

lines is projected onto a sample. Afterwards, each intersection between the lines 

and a grain boundary is marked. Each mark is assigned a value that represents 

the weight of that intersection. The weights are determined based on several 

rules [24,25]:  

• When a line intersects a grain boundary it is weighted as 1 

• Twin Grain Boundaries are not weighted  

• When a line touches but doesn’t intersect a grain boundary it is weighted 
as 0.5 

• When a line intersects a triple point (Intersection point of three grains) it is 
weighted as 1.5 

The true grain size 𝐿̅ can then be calculated using the magnification 𝑀 , the 

number of intersections ∑𝑥 and the measured grain size L, which is given as the 

average distance between two intersection points [23]: 

𝐿̅ =
∑𝐿

𝑀 ∗ ∑𝑥
 

There are two possible ways to apply the Linear Intercept Method. A depiction of 

the two methods can be found in Figure 3.3.  

 

 

  

 

 

 

 

 

 
Figure 3.3: Representation of Linear Intercept method using straight lines (left) and circles 

(right) [23]. 

(3.3) 
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Since this method of characterizing grain size is only applicable to two-

dimensional data and gives no information about the Spatial Grain Orientation it 

was not further considered in this project.  

 

3.2.2 Principal Component Analysis (PCA) 

The principal components of a collection of points in a real coordinate space are 

a sequence of 𝑝 unit vectors, where the 𝑖-th vector is the direction of a line that 

best fits the data while being orthogonal to the first 𝑖 − 1 vectors [29]. With this an 

orthonormal basis is determined where different dimensions are linearly 

uncorrelated. This can be achieved by computing the eigenvalues and 

eigenvectors of the covariance matrix of a set of data points. The eigenvalues 

correspond to the variance in the direction of the corresponding eigenvector. The 

main axis of the set is then defined as the direction of the highest eigenvalue. [28] 

To perform PCA on a general set of data points 𝑥 , the set must first be 

standardized to have zero mean: 

𝑋̅ = 𝑥 −
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

Preferably the values of the set should also be standardized to range from 0 to 1 

in every dimension 𝑑. This is to ensure that dimensions of higher order have the 

same influence on the PCA.  

𝑋𝑑 =
𝑋𝑑
̅̅̅̅ − min

𝑖
𝑋𝑑
̅̅̅̅

max
𝑖

𝑋𝑑
̅̅̅̅ − min

𝑖
𝑋𝑑
̅̅̅̅

       𝑑 ∈ 1,… , #𝐷𝑖𝑚 

 

With this procedure the standardized set of data points 𝑋 is generated. 

Afterwards, the estimation of the covariance matrix 𝐶 is calculated as follows:  

𝐶 = 𝑋𝑇𝑋 

Then the eigenvalues 𝑑𝑖 of the covariance matrix are stored in a diagonal matrix 

𝐷 while the eigenvectors 𝑣𝑖 are stored in a matrix 𝑉. The eigenvalues in matrix 𝐷 

are commonly ordered in an increasing sequence. A schematic representation of 

the Principal Component Analysis applied to multivariate Gaussian distribution 

can be found in Figure 3.4. 

 

(3.4) 

(3.5) 

(3.6) 
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For the quantification of microstructure using PCA each grain is analyzed 

separately. The center positions of the cells, that make up a grain, are stored in 

the matrix 𝑥. Then PCA is applied to find the grain’s main axis. Afterwards, all 

data points are projected onto the three principal directions and the maximum 

distance between any two points is calculated as: 

𝑝𝑖̅ =
𝑝𝑖 ⋅ 𝑣𝑘

‖𝑣𝑘‖
𝑣𝑘 

𝑑𝑘 = max(‖𝑝𝑖̅ − 𝑝𝑗̅‖)    𝑘 = 1,2,3 

Where 𝑝𝑖̅ is the projection of the data point 𝑝𝑖 on the eigenvector 𝑣𝑘 and 𝑑𝑘 

represents the maximum distance between either two projection points, which is 

used as a representative result for the grain’s dimension in that direction. 

With these three distances the grain shape can be quantified. The grain aspect 

ratio 𝑟 is then determined as: 

𝑟 =
𝑑1

(𝑑2 + 𝑑3)
2

 

Where 𝑑1 is the maximum distance between two points on the main axis and 𝑑2 

and 𝑑3 are the maximum distance between two points on the off axes. 

Using these results the Spatial Grain Orientation can be fully characterized. 

Figure 3.4: PCA applied to a multivariate Gaussian distribution 
centered at (1,3). [29] 

(3.7) 

(3.8) 

(3.9) 
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3.2.3 Texture 

The Principal Component Analysis gives a quantification of the geometrical 

properties of the microstructure. To fully quantify the microstructure a method for 

quantification of the Crystallographic Grain Orientation must be adapted. For a 

given microstructure its Texture is defined as the distribution of crystallographic 

orientations of a polycrystalline sample. If a sample has no or very weak texture 

it is said to have a random distribution. If there exists a preferred orientation, then 

a sample has a moderate or strong texture. Samples with strong textures tend to 

exhibit properties with a high level of anisotropy. A common technique for 

visualization of texture is the inverse pole figures. [32] 

Because of the systematic temperature gradient directions during Selective Laser 

Melting, a moderate to strongly textured microstructure is expected. According to 

A. Leicht [31] the texture of a microstructure in SLM is dependent on the melt 

pool dimensions, see Figure 3.5. 

There are two main approaches for the quantification of crystallographic 

orientation, namely its representation in a reference coordinate system using 

Euler angles or a representation of the crystallographic alignment with a physical 

direction (in this case the direction of highest temperature gradient). The latter is 

commonly used in research because of its independence on a macroscopic 

coordinate system, which makes it easier to compare microstructures from 

different sources. The main drawback of this method is its limitation to two-

dimensional data sets. Since most experimental results are generated using 

sliced samples, this drawback is not an issue when comparing simulation results 

with experimental results. To mimic the two-dimensionality of experimental 

results the simulation data was virtually sliced, and the slices were analyzed using 

the MATLAB Toolbox MTEX. To this end the results of each slice were visualized 

in inverse pole figures. 

 

 

 

 

 

 

 

 

Figure 3.5: Schematic representation of the texture evolution with incrasing meltpool depth. [31] 



Methods  22 

22 
 

  



  23 

23 
 

4 
 

 

Results and Discussion 

In this chapter a summary of the results of the Microstructure Sensitivity Analysis 

to Process Parameters will be shown. First, a quick overview of the MATLAB tool 

used for data extraction will be given. Afterwards, the generated results will be 

displayed and discussed in detail. 

 

4.1 Data Extraction 

Early in this project it was decided that that for an efficient simulation of Selective 

Laser Melting Single Tracks, a tool must be developed that combines the thermal 

simulation from ABAQUS with the Cellular Automata Microstructure simulation in 

MATLAB. First the input parameters of the thermal simulation were defined to be:  

• The Goldak heat source parameters (𝑎, 𝑏, 𝑐𝑓 , 𝑐𝑟) 

• The absorptivity (α) 

• The Process Parameters (𝑃𝑙𝑎𝑠𝑒𝑟 , 𝑣𝑠𝑐𝑎𝑛, 𝑡𝑙𝑎𝑦𝑒𝑟) 

Where 𝑃𝑙𝑎𝑠𝑒𝑟 ,𝑣𝑠𝑐𝑎𝑛 ,𝑡𝑙𝑎𝑦𝑒𝑟 denote the laser power, laser scan speed and layer 

thickness, respectively. These predefined inputs should ensure a high enough 

flexibility for the design of experiments in future projects. After the design of each 

input has been chosen and saved in an excel file the tool then generates an 

appropriate input (.inp) file and starts the thermal simulation in ABAQUS. 

For the simulation to be able to simulate the powder layer an ABAQUS subroutine 

was defined. This subroutine assigns a field variable, which represents the 
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current state of the node (powder or bulk), to the powder layer and the bulk 

material. During the simulation the subroutine checks in every time step which 

nodes in the powder layer have reached the melting temperature. If they reach 

the melting temperature their field variable is then be set to bulk. With this 

approach a powder layer could be simulated using continuum-based modelling. 

The different material properties used for bulk and powder can be found in     

Table 4.1.  

 

 

 

 

 

 

 

After the thermal simulation has concluded the generated temperature data is 

then extracted from the dat-file (.dat) and stored in a MATLAB-File. Afterwards, 

the dat-file is deleted for memory reasons. The temperature data is then used for 

the determination of melt pool dimensions and for the simulation of 

microstructure. Finally, the melt pool data is stored, and the microstructure data 

is analyzed using the method explained in Chapter 3.2. The microstructure 

analysis was divided into two parts, namely the two-dimensional and three-

dimensional analysis. This is to ensure that the generated microstructure can be 

validated using two-dimensional experimental data and can be analyzed in its full 

three-dimensional complexity. A schematic representation of the tool can be 

found in Figure 4.1.  

Additionally, this tool was created in cooperation with Bardh Dervishaj, who was 

doing a sensitivity analysis of melt pool dimensions to process and modeling 

parameters. The tool was designed to be fully automated and easy to use. All the 

tool needs are an excel file with the predefined input parameter design.  

 

 

 

 

Table 4.1: Table of material properties used in the thermal simulation 
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4.2 Microstructure Sensitivity Analysis to Process 

Parameters 

The Microstructure Sensitivity Analysis to Process Parameters was split into two 

main categories, namely the three-dimensional analysis and the two-dimensional 

analysis. The latter was then validated using experimental data.  

 

4.2.1 Three-Dimensional Microstructure Analysis 

To get a better understanding how the three-dimensional grain structure evolves 

during a Selective Laser Melting process, the grain’s spatial orientation and 

geometries were first analyzed. For this, three main quantities were determined, 

namely the average grain aspect ratio, the grain’s main axis angle 𝛼 projected on 

the substrate plate and measured from the laser scan direction and the grain’s 

main axis tilt angle 𝛽 measured from the substrate plate towards the building 

direction. The quantities of each grain were then weighted based on its grain size, 

meaning that larger grains have a stronger influence on the data. This is to ensure 

a more intuitive understanding of what the average grain structure looks like 

without having to visualize the microstructure. These three quantities can give a 

very intuitive understanding of the spatial grain evolution.  

 

Figure 4.1: Schematic representation oft he MATLAB tool for microstructure and melt pool analysis. 
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A sample of this analysis can be found in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

As evident from Figure 4.2 the microstructure shows to be very anisotropic since 

the grain’s average aspect ratio is larger than 1.5. This aspect ratio hints at a 

columnar grain growth. Looking at the main axis angle 𝛼 a clear trend of grains 

growing in a ±60° direction seems to arise. This is not a surprising result, since 

grains lying outside of the laser path tend to grow towards the laser direction. This 

causes the grains further outside the laser path to have a higher magnitude of 

angle 𝛼. 𝛽 on the other hand, shows a clear trend of columnar grain growth with 

a tilt angle of 40°. This could also be explained by the tendency of columnar grains 

to grow in the direction of highest temperature gradient, which in this case is the 

direction towards the laser source. All in all, the three-dimensional microstructure 

shows to possess a columnar grain structure, in which most grains are growing 

towards the laser source in direction of highest temperature gradient. With this 

an intuitive understanding of the whole three-dimensional grain structure was 

achieved.  

The final step in the analysis would be to look at the crystallographic grain 

structure, which is not possible with the current methods as discussed in   

Chapter 3.2. Therefore, the three-dimensional sensitivity analysis was continued 

without investigating the crystallographic properties.  

Figure 4.2: Sample result for the three-dimensional microstructure analysis with 

𝑃𝑙𝑎𝑠𝑒𝑟 = 200𝑊 𝑣𝑠𝑐𝑎𝑛 = 700(
𝑚𝑚

𝑠
)  𝑡𝑙𝑎𝑦𝑒𝑟 = 0 𝑢𝑚. 

. 
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To quantify the effects of Process Parameters to the microstructure evolution, the 

quantities were plotted against the Line Energy Density. The Line Energy Density 

𝐸𝑙𝑖𝑛𝑒 for a given set of Process Parameters is defined as:  

𝐸𝑙𝑖𝑛𝑒 =
𝑃𝑙𝑎𝑠𝑒𝑟

𝑣𝑠𝑐𝑎𝑛
 

Where 𝑃𝑙𝑎𝑠𝑒𝑟 and 𝑣𝑠𝑐𝑎𝑛 are the laser power and laser scan speed, respectively. 

The results of this analysis can be found in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As evident from the above figure, the microstructure seems to produce finer 

grains with increasing Line Energy Density. An explanation for this can be the 

high temperature gradients with higher Line Energy Density and the therefore 

higher cooling rates. Interestingly, the average aspect ratio of microstructure 

seems to be mostly insensitive to the Line Energy Density with a slight tendency 

to decrease with increasing Line Energy Density. Lastly, the average tilt angle of 

the microstructure seems to decrease with increasing Line Energy Density. This 

can be attributed to the steeper temperature gradients at low Energy Densities. 

(4.1) 

Figure 4.3: (top left) 3D grain size, (top right) 3D aspect ratio, (bottom) 3D tilt angle plotted against 
Line Energy Density 

. 
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To finalize the sensitivity analysis to Process Parameters the data was also 

plotted against the layer thickness, since the Line Energy Density does not 

account for changes in layer thickness. The results can be found in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen from the figure the average grain size and aspect ratio seem to be 

insensitive to the layer thickness. This means that the grain geometries should 

not change with a change in layer thickness. The only changing quantity seems 

to be the tilt angle of the grains. Unusually, it increases with increasing layer 

thickness. This could be based on the low conductivity of the powder layer. This 

low conductivity could cause localization of heat in the powder layer and could 

steepen the tilt angle of the direction of highest temperature gradient. This would 

cause the grains to grow in a steeper direction and the grain geometries to stay 

the same. The steeper angle cannot be explained by a deeper melt pool since 

the melt pool depth is insensitive to Layer Thickness as shown by Bardh 

Dervishaj [40]. The figure also suggests different trends for different Line Energy 

Density levels, which could be explained by the fact that the vitalization uses 

linear interpolation functions and only one simulation was performed for each 

Design Point. 

With this, the three-dimensional sensitivity analysis was concluded and the two-

dimensional analysis with experimental data was continued.  

Figure 4.4: (top left) 3D grain size, (top right) 3D aspect ratio, (bottom) 3D tilt angle plotted against the 
layer thickness with a color ramp denoting the Line Energy Density 

. 



Results and Discussion  29 

29 
 

4.2.2 Two-Dimensional Microstructure Analysis 

The two-dimensional analysis was subdivided into two main categories, namely 

the analysis of grain shape (grain size / aspect ratio/ grain tilt angle) and the 

analysis of crystallographic grain orientation using inverse pole figures. These 

values were then compared with experimental results for an attempt of validating 

the simulation. Since at the time of this project only experimental results with a 

layer thickness of 𝑡𝑒𝑥𝑝 =  0 𝜇𝑚 were available the analysis was conducted with a 

constant layer thickness of 𝑡𝑠𝑖𝑚 = 0 𝜇𝑚.  

First, the grain shape was analyzed by plotting the experimental data as well as 

the simulated data against the Line Energy Density. These results are depicted 

in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in the first plot the simulation seems to always underpredict the grain 

size of the experimental results. A slight trend of increasing grain area with 

increasing Line Energy Density can also be observed for both data sets. The 

simulated data has a much smaller variance than the experimental one. This 

makes it difficult to compare the two results. The second plot shows that the 

simulated data suggests the two-dimensional aspect ratio to be insensitive to the 

Line Energy Density. Interestingly, the experimental data seems to coincide with 

Figure 4.5: (top left) 2D grain size, (top right) 2D aspect ratio, (bottom) 2D tilt angle plotted against 
Line Energy Density, with simulation results in blue and experimental results in orange for a constant 

layer thickness 𝑡𝑙𝑎𝑦𝑒𝑟 = 0 𝜇𝑚  

. 
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the simulating data for some of the values. But once again the experimental data 

has a much higher variance than the simulated data and hence makes it difficult 

to compare them. In the last plot a clear trend of decreasing tilt angle with 

increasing Line Energy Density was observed. Since this tilt angle is defined as 

the average angle between the transversal direction and the main axis direction 

measured towards the building direction, it has practically no real physical 

meaning. The experimental data seems to best fit this plot. But once again due 

to the high variance of the experimental data set it is hard to compare it to the 

simulated data set. All in all, the simulated data seems to consistently 

underpredict the average grain area and in general fit the average aspect ratio 

and tilt angle. But due to the high variance of the experimental data no 

conclusions could be drawn. More experimental data would be needed for a full 

validation of the simulation. 

The Texture of the simulation and experimental data was analyzed using the 

MATLAB Toolbox MTEX. With this, the inverse pole figures were calculated and 

compared to the experimental data. A depiction of the results can be found in the 

following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: (top left) Orientation plot of experimental data (top right) Orientation Color Key (bottom) 

orientation plot of the simulated data. Orientation plots were indexed along the building direction. The 

Process Parameters for both plots are 𝑃 = 200𝑊, 𝑣 = 1100
𝑚𝑚

𝑠
, 𝑡𝑙𝑎𝑦𝑒𝑟 = 0𝜇𝑚. 𝐸𝑙𝑖𝑛𝑒 = 0.181818

𝐽

𝑚𝑚
 

. 
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Figure 4.7: (top left) Orientation plot of experimental data (top right) Orientation Color Key (bottom) 
orientation plot of the simulated data. Orientation plots were indexed along the building direction. The 

Process Parameters for both plots are 𝑃 = 200𝑊, 𝑣 = 900
𝑚𝑚

𝑠
, 𝑡𝑙𝑎𝑦𝑒𝑟 = 0𝜇𝑚. 𝐸𝑙𝑖𝑛𝑒 = 0.222222

𝐽

𝑚𝑚
 

. 
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To compare these results quantitively the orientations were also plotted in an 

inverse pole figure. The results can be found in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As evident from the figures above the experimental data seems to have a 

moderate [011] texture at low Line Energy Densities and a moderate [111] texture 

at higher Line Energy Densities. The simulation predicts a rather random texture 

at low Line Energy Densities whilst also predicting an increase in [111] texture at 

higher Line Energy Densities. Surprisingly, the simulation predicts a much 

stronger [001] texture in general. This is mostly likely due to the Update Rule 

used in the Cellular Automata simulation where the Decentered Octahedron 

Method tries to mimic the preferred growth directions of the unit cell. In the 

experiments this preferential growth direction is overshadowed by the fast cooling 

Figure 4.8: (left) Inverse Pole Figure of experimental Data, (right) Inverse Pole Figure of simulated 
data. Inverse pole plots were indexed along the building direction. The Process Parameters for both 

plots are 𝑃 = 200𝑊, 𝑣 = 1100
𝑚𝑚

𝑠
, 𝑡𝑙𝑎𝑦𝑒𝑟 = 0𝜇𝑚. 𝐸𝑙𝑖𝑛𝑒 = 0.181818

𝐽

𝑚𝑚
 

 

. 

Figure 4.9: (left) Inverse Pole Figure of experimental Data, (right) Inverse Pole Figure of simulated 
data. Inverse pole plots were indexed along the building direction. The Process Parameters for both 

plots are 𝑃 = 200𝑊, 𝑣 = 900
𝑚𝑚

𝑠
, 𝑡𝑙𝑎𝑦𝑒𝑟 = 0𝜇𝑚. 𝐸𝑙𝑖𝑛𝑒 = 0.222222

𝐽

𝑚𝑚
 

 

. 
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rates and the short solidification times. Because this analysis was performed 

using a single-track simulation the presence of a strong texture evolution is not 

expected to develop. If the analysis was to be performed on a multi-layer 

simulation, then a strong texture of the columnar grains is expected to arise. In 

general, for the single-track simulation the resulting texture is arbitrary. Again, it 

was not possible to validate the simulation due to lack of experimental data.  
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5 
 

 

Conclusion and Outlook 

5.1 Conclusion 

In this project an existing Selective Laser Melting Microstructure Simulation 

based on Cellular Automata was used to conduct a Sensitivity Analysis of 

Microstructure to Process Parameters. This analysis yielded the following 

conclusions: 

• The MATLAB tool developed seems to be an efficient way to extract 

microstructure results whilst also incorporating Design of Experiment 

approaches 

• Because of the strongly anisotropic and columnar grain growth during SLM 

conventional microstructure quantification methods like the Linear 

Intercept method are not appropriate 

• The Principal Component Analysis provides a good approach for Grain 

Shape Quantification for three- and two-dimensional data sets 

• Texture analysis can be used to quantify the Crystallographic Grain 

Orientation 

• The average grain size and grain tilt angle decreases with increasing Line 

Energy Density, whilst the aspect ratio of the grains is insensitive to the 

Line Energy Density 

• With increasing Layer Thickness, the tilt angle of the grains increases, 

whilst grain size and aspect ratio are insensitive to the Layer Thickness 
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• The two-dimensional analysis of simulation data compared to 

experimental data shows a much higher variance in the experimental data 

• The simulations consistently underpredicts the grain area. The simulation 

predicts the aspect ratio and tilt angle well.  

• Texture analysis shows a random texture for simulation data and 

experimental data for single tracks 

• The simulation predicts a weak [001] texture for all Line Energy Densities 

while the experiments suggest a weak [011] texture for low Energy 

Densities and a weak [111] texture for high Energy Densities 

• Due to lack of experimental data, it was not possible to validate the 

simulation 

 

5.2 Outlook 

For the continuation of this project the following topics should further be pursued: 

• Generation of experimental data with varying Layer Thicknesses and 

Energy Densities  

• Validation of the simulation with the new experimental data set 

• Analysis of texture evolution parallel and perpendicular to scan direction 

• Simulation of multi-layer Selective Laser Melting processes for a more 

general analysis of microstructure 

• Generation of multi-layer experimental data for further validation of the 

simulations 
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