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Abstract

Additive Manufacturing (AM) 1s a modern and promising manufacturing technique
which can produce highly complex and adaptable structures. AM has struggled to find
commercial success due to the lack of general understanding and is therefore heavily
researched. The focus in research is to capture the full complexity of AM and be able
to reproduce the process in the virtual world while minimizing the computational cost.
For this task virtual models have been developed that promise to deliver representative
results. In this project a sensitivity analysis of melt pool dimensions to process and
modeling parameters was performed. For this purpose, multiple Design of Experiment
(DOE) approaches were employed, and their performances were compared.
Additionally, the Response Surface Method (RSM) was applied to validate the claims
from the sensitivity analysis and to find a second order representation of the system.
In a last step an optimization was performed on the Response Surface to predict optimal
values for the modeling parameters.
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1 Introduction 1

1 Introduction

1.1 Motivation

The demand of adaptable and flexible structures has led to development
of manufacturing processes that can produce highly complex parts.
Therefore, new manufacturing techniques like Additive Manufacturing
(AM) are being heavily studied and promise to be the solution to this
problem. Additive Manufacturing opens the possibility of manufacturing
parts with high complexity while requiring minimal additional effort. One
of the major drawbacks of these techniques is that the material needed
for most processes needs to be present in powder form. This increase
the material cost substantially and is one of the main reasons why AM
hasn’ t found commercial success yet. Contemporaneously, AM parts
have had a history of worse structural performance when compared to
their conventionally manufactured counterparts.

One of the main subcategories of Additive Manufacturing is Selective
Laser Melting (SLM). Selective Laser Melting is a layer—based
manufacturing technique that aims to produce complex part while
minimizing the amount of waste. SLM achieves this by trying to optimize
the usage of material during the process and only use material for the
part and its supports. With this procedure material is only added to the
part and never removed, giving these techniques the name “Additive
Manufacturing” . The drawback of this technique is that the process is
not fully understood yet. Therefore, recent studies have focused on the
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development of sophisticated, predictive models which promise to
capture the procedure in its full complexity. This would simplify the
integration of AM into the manufacturing pipelines of companies and open
a new chapter for commercial manufacturing.

1.2 Objective of this Project

The SLM process can be divided into smaller subprocesses, namely:
Material deposition, Mel pool formation and Solidification. To understand
the SLM process each of these segments must be fully understood
separately. Therefore, the focus of this project lies on the central part of
SLM, which is the melt pool formation.

To contribute to the understanding of the SLM process, this project aims
at characterizing the sensitivity of the melt pool dimensions (depth and
width) to process and modeling parameters (heat source parameters and
material absorptance). In a later step the chosen modeling parameters
were optimized for a given set of process parameters.

For the quantification of melt pool dimensions a fully automated MATLAB
tool was developed. This MATLAB tool runs thermal simulations in
ABAQUS, extracts the thermal data and computes the melt pool
dimensions directly.
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2 Theoretical Basics

2.1 Material: Hastelloy X

After the invention of the gas turbine engine, it was evident that the overall
efficiency of these engines was limited by the peak temperature they could
operate at. To illustrate this, a simplified thermo dynamic cycle, also known as
the Brayton Cycle, can be found in figure 2.1. In the first step of this
thermodynamic cycle, gas 1s taken in at atmospheric pressure and temperature (1).
In the following steps the gas i1s compressed to a higher pressure (2) and
combustions occurs, raising the temperature of the chamber to its peak value (3).
Afterwards, the gas 1s expanded back to a lower level of pressure and temperature
(4), which produces work that can be extracted to drive the turbine. A simplified
version of the thermodynamic efficiency of this system can be expressed as
follows [1]:

Where T, 1s the peak temperature of the chamber and T; 1s the temperature of the
released gases. From this formulation it 1s evident that to increase the
thermodynamic efficiency either T3 must be decreased or T, must be increased.
Since Ty 1s difficult to control it is much simpler to increase T, [1]. This put new
requirements on existing materials, which encouraged the development of Nickel
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base alloys that exhibit high strength at elevated temperatures and high oxidation
resistance. One of these Nickel based superalloys is Hastelloy X.

The nominal chemical composition of Hastelloy X can be found in Table 2.1.

Element Ni Fe Cr Co Mo W C Si Mn
Composition[%] | Bal. 182 215 2.1 9.4 09 004 05 0.1

Table 2.1 : Nominal chemical composition of Hastelloy X [30]

Hastelloy X 1s known for being a Solid-Solution strengthened Nickel base
superalloy which forms Mo-rich carbides when exposed to short thermal energy
[2], while long exposure leads to formation of detrimental phases like p and o [4].

One of the main drawbacks of Hastelloy X in combination with SLM i1s its
susceptibility to hot cracking during the manufacturing process. Due to the rapid
cooling rates in SLM, Hastelloy X samples usually form a columnar dendritic
microstructure [3]. Samples build with SLM tend to have higher yield strength
(YS) and ultimate tensile strength (UTS) and lower elongation properties when
compared to hot forged samples. This can be attributed to the ultrafine
microstructure that develops during the SLLM process [6].

L

Figure 2.1 : Entropy-Temperature Diagram for the Brayton Cycle [1].
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2.2 Selective Laser Melting (SLLM)

Selective Laser Melting is a layer-based powder bed manufacturing technique in

which selective areas of a powder layer are molten into a fully connected part. A
representation of the SLM process can be found in figure 2.2. The SLM process
starts by creating a model of the desired part in a CAD software. In the next step
the support structures are added to the model. Since SLLM parts are produced
Layer by Layer, overhanging structures need to be sufficiently supported, to
ensure stability during manufacturing. After this step the model is sliced into
equally thick layers which will later be used as the blueprint for the SLM process.
Then the model data is loaded onto the SLM machine, and the manufacturing
process can begin.

First, the build platform is lowered by one layer thickness and the powder
delivery platform is raised to provide material for the recoater. In the next step,
the recoater 1s moved across the build platform to apply a layer of powder. Then,
the moving mirror redirects the laser to the start position and the laser source 1s
turned on. From now on the moving mirror will read out the current layer
information from the model data and redirect the laser to the correct positions.
While the laser is moving across the build plate it will melt the powder on the laser
path and create a connected surface. After the laser has fully molten all selective
areas of this layer, the laser 1s turned off and the process is repeated until the part
1s fully manufactured.

( 0 Laser beam \ \ Moving mirror

Recoater blade

Metal p{der , | -
W £ / -

- L

|

.

Powder delivery Build platform
platform

Figure 2.2 : Schematic representation of the SLM process.
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Parts produced with this process tend to have microcracks, pores and poor surface
quality. To increase the mechanical quality of the part, postprocessing 1s
performed. The first step in postprocessing 1s detaching the part from the build
plate and removing the support structures from the part. In a next step the part™ s
surface is machined and polished. This increases the part’ s fatigue performance
as fatigue cracks usually nucleate from the surface and use surface imperfections
as crack nucleation sites.

The defects in SLM can be subdivided into two main categories, namely Lack of
Fusion defects (LoF) and Keyhole Pores. Lack of Fusion defects form when the
powder layer 1s not fully molten, which leads to partially connected layers and 1s
detrimental to the part” s quality. In postprocessing Hot Isostatic Pressing (HIP)
1s performed to counteract these LoF defects by compressing the part at an
elevated temperature, which leads to better bonding of the partially connected
layers. Contrary to LoF defects Keyhole pores cannot be removed by Hot
Isostatic Pressing. These pores form during the SLM process when the energy
input 1s high. Due to this high energy input the material reaches boiling point and
starts to evaporate, which creates an evaporation pressure that depresses the melt
pool. This depression creates new melt pool surface deep inside the melt pool at
which laser energy is constantly being reflected and absorbed, encouraging
further evaporation of the material. A schematic representation of this effect can
be found in figure 2.3.

B Laser ray [b] [ Evaporation [d]
Wi U X 11‘/
L . :
Powder layer Initiation of melt pool Keyhole started Melt pool

@Laser scattering inside the keyhole m Collapsed keyhole [E

_Long keyhole

Recoil
pressure Entrapped vapor u Pore formation

Figure 2.3 : Schematic representation of the formation of LoF defects and Keyhole pores. [10]
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If the keyhole depression is still present when the solidification occurs a keyhole
pore 1s formed. These pores can be distinguished between the LoF defects by their
shape since keyhole pores are usually present in a spherical shape while Lol
pores have irregular shapes. Keyhole pores are considered to be dangerous and
detrimental to the part’ s quality, since they contain high pressure gas.
Simultaneously, it is difficult to predict the mechanical response of a part with
Keyhole pores or remove the Keyhole pores with postprocessing. Therefore,
studies like W. E King [8] are trying to quantify the formation of Keyhole pores in
SLM. King suggests the following estimation for the formation of Keyhole pores
in 316L stainless steel samples using the normalized enthalpy:

AH m=*T,
-—>
hS Tm

Where AH i1s the specific enthalpy, hg enthalpy at melting, T,, the melting
temperature and T}, the boiling temperature of the material.

2.3 SLLM Process Parameters and Energy Density

Due to its complexity and high dimensionality, the SLLM process 1s attempted to
be explained with models that minimize the number of parameters. It is desired
that this set of parameters is material independent and fully captures the
complexity of the system. Hence, the main parameters in SLM are chosen to be as
follows:

e P:lLaser Power [W]

e v, Scan Speed [%]

o t.. Layer Thickness [mm]

e h: Hatch Distance [mm]

e Scan Strategy
These parameters are used to characterize and predict the quality and efficiency
of a SLM process.

Another method, which combines the previously mentioned process parameters,
is called the energy density method, in which one global energy density parameter
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1s used as the main parameter of the system. This has proven to be a good starting
point in the analysis of SLM processes and has been widely used in research.

The dimensions of this energy density are application dependent and can vary
between three main definitions. These three definitions consist of the following

[1]:
P J

e Specific three-dimensional Energy Density: E, = [ 3]
Vgxtgxh mm
. . . . J
e Specific two-dimensional Energy Density: E, = vih [mmz]
S
. . . . J
e Specific one-dimensional Energy Density: E, = vi [E]
S

L. Carter[1] suggests another definition for the three-dimensional energy density,
namely:

P
(Ey = ———)

Cwgxd,*h

Where d;, 1s the laser spot size. All these definitions try to give an estimation of
the input energy, since this has proven to be an important quantity for the
prediction of SLM processes.
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3 Methods and Modeling

In this chapter an explanation of all modeling techniques and methods used in this
project will be given. Additionally, the setup of the simulation environment and
the assumptions made will be described in detail.

3.1 Heat Source Model (Goldak)

The governing equation of the SLLM process can be represented by the following
equation [11]:

dH
' =Vxq(rt)+Q(x,y,2t) inQ

withq = —k *VT

Where Z—I: 1s the enthalpy derivative with respect to time t, q is the heat flux vector,

Q 1s the heat source term, k 1s the conduction term of the material, T is the
temperature and Q 1s the domain of the body. As evident from this formulation a
good approximation of the term q and Q are essential for a simulation to be
representative of the process. To represent Q an adequate heat source model must
first be chosen.

In practice there are two main categories of heat source model, namely surface
heat sources models and volumetric heat sources models. Surface heat source
models are generally used for interface tracking, where the heat source acts on
the surface of the melt pool, after the powder layer has been molten by a
volumetric heat source [11]. If Surface heat sources are used as the only heat
source in a SLM simulation, then they tend to produce a concentrated heat flux

9
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on the surface of the powder layer which leads to a localization of thermal energy
at the surface of the powder. Due to this localized energy, vaporization can easily
occur in the vicinity of the laser spot. This behavior is reinforced by the low
conductivity of the powder layer and 1s the reason why surface heat sources are
known for overpredicting the vaporization in the SLM process. Surface heat
sources also do not take the laser penetration into the powder layer into account.
One way to work around this issue is by implementing methods like the ray tracing
method, where the surface heat source 1s modeled as a laser source with outgoing
laser beams. The model then tries to represent the path of the laser beam deep into
the powder layer, considering all reflections of the laser beam on the surface of
the powder particles. This approach is computationally expensive and requires a
particle-based model of the powder layer but is capable of producing
representative results when compared to experimental data [13].

The main advantage of volumetric heat sources is that they can capture this laser
penetration even when the powder is modeled as a continuum. At the same time
volumetric heat sources are easy to implement in commercial software like
ABAQUS and tend to predict the melt pool dimensions with high accuracy, while
being computationally less expensive than the ray tracing methods [11]. One
disadvantage of volumetric heat source models is their inability to accurately
predict vaporization in the powder layer. Volumetric heat sources spread the
thermal energy in a wide three-dimensional domain which attenuates the
temperature concentration in the vicinity of the laser spot. This leads to lower
peak temperatures in simulations that use volumetric heat sources as compared to
simulations that use surface heat sources [11].

Because of its simple implementation in commercial software, its low
computational cost and since vaporization phenomena were ignored the
volumetric heat source model was chosen for this project.

The volumetric heat source chosen in this thesis is the Goldak heat source model.
The Goldak power density distribution for the rear (r) and front (f) part of the heat
source model can be defined by the following equation [14]:

6V3/:Q —kx? —ly? mz?
——eX ex ex
abes v p( o ) p(bz) p( 2 )

Qf/r(xl Y Z) =

Where Q 1s the energy input rate, (a, b, ¢, /) are the geometrical Goldak modeling
parameters, (k, [, m) are the concentration factors in each direction.

10



3 Methods and Modeling 11

From this equation it is apparent, that the Goldak model is a double ellipsoid heat
source model with exponentially decaying power density distribution along the
main directions. A schematic representation of the Goldak heat source model can
be found m figure 3.1. To limit the number of parameters in the analysis ¢ was
chosen to be equal to a.

front part of ellipsoid

rear part of ellipsoid

Figure 3.1 : Goldak Heat Source Model. [12]

3.2 Powder Modeling

As previously mentioned, a proper modeling of the powder layer is crucial to
ensure the correctness of results. Since powder 1s a porous medium 1t 1S not
expected for powder to have the same material properties as the bulk material.
The thermal conductivity of powder varies in the range of 1.5%-1% of the thermal
conductivity of bulk material. This can be attributed to the heavily reduced
contact surface between powder particles as compared to the bulk material, which
attenuates the transmission of thermal energy through the medium. The low
thermal conductivity of the surrounding gas causes thermal energy transfer to be
mainly driven by the contact surface of the particles [16]. When modeling thermal
conductivity an assumption for the directional dependence must be made. K. Lee
[11] suggest that there 1s a non-negligible directional dependence and proposes an
anisotropically enhanced thermal conductivity. For this thesis an isotropic
thermal conductivity model was chosen, due to its simple implementation.

11
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Oppositely, powder tends to have higher absorption properties when compared to
bulk material, which can be explained by a general laser path. As a laser beam hits
the surface of a powder particle some of its energy 1s absorbed while the rest is
reflected. This reflected beam can then travel through pores in the medium and
hit other powder particles where part of its energy is absorbed, and the rest is
reflected again. This continues until the laser beam leaves the powder layer or
until the laserbeam’ s energy has been fully absorbed. The absorption coefficient
1s usually set to be temperature dependent but isotropic. There are studies that
suggest a depth dependence of the absorption coefficient [11]. For this project a
constant and 1sotropic absorption coefficient was chosen for the powder layer.

A summary of the chosen thermal conductivity can be found in the following table:

Thermal Conductivity

Thermal Conductivity [%] Temperature [°C] Field
9.1 25 Bulk
34 1260 Bulk

0.124 25 Powder

0.169 1260 Powder

Table 3.1 : Thermal Conuctivity of powder and bulk material used in the thermal simulation.

With this, there are two main options for powder modeling in the context of SLM,
namely the continuum-based and particle-based modeling. As previously
mentioned, the particle-based modeling approach is computationally expensive
but can produce accurate results. In this approach the powder layer is represented
by a selection of randomly oriented and shaped powder particles. This technique
can be used with either surface or volumetric heat source models but tends to find
most success in conjunction with surface heat sources when paired with ray
tracing methods [13]. Since the mesh for this thesis had already been created and
optimized, figure 3.2, a continuum-based approach was chosen. In this approach
the whole powder layer 1s replaced by a continuum with powder properties.

Advantages of this approach are low computation times and elimination of any
randomness that might occur when sampling the powder particles in the particle-
based approach. To keep track of which part of the simulation is powder and
which part 1s bulk, a field variable was introduced. This field variable is 1 if the
current element 1s bulk material and O if the current element is powder. In the
initialization step this field variable is set to be 0 in the powder layer and 1

12
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everywhere else on the mesh. A subroutine keeps track of all elements that have
surpassed their melting temperature (here T, = 1285 °C) and replaced their field
variable with 1. The mesh and a possible result after completion of a thermal
simulation can be found in figure 3.2.

+
I
+/
+E
+
+
té
+
+2

Figure 3.2 : Results of a thermal simulation showing the evolution of the field variable.

3.3 Design of Experiments (DoE)

To capture the full complexity of a multidimensional system (like SLLM) Design of
Experiments methods are often applied. These methods act as a tool to sample
experimental/simulation data points in the design space of the system. The goal
of these methods 1s to decrease the number of experiments/simulations that must
be performed in order to get a representative model of the system. They are often
used in direct optimization, sensitivity analysis or for the creation of a start
generation in genetic algorithms. In research a large amount of Design of
Experiment techniques are used to varying success [17].

13



3 Methods and Modeling 14

3.3.1 One-Factor-at-a-Time (OFAT)

One of the most used DoE methods is the One-Factor-at-a-Time Design. OFAT
design 1s part of the family of systematic sampling techniques in which the
sampling of the same system 1s always going to be the same. The counterpart to
this are stochastic sampling methods, in which design points are sampled with a
random component.

The main appeal of this DoE is its simple implementation and its ability to
produce results in a swift manner. In this DoE only one factor at a time 1s changed
between experiments/simulations. This 1s supposed to give an accurate
representation of the system” s dependence on the specified parameter. Since
only one parameter is changed between simulations the results become simple to
analyze and conclusions can be drawn in a fast pace. The predictive capabilities
of this sampling techniques tend to underperform when compared to other DoE
because OFAT 1is incapable of predicting the interaction between different
parameters [19]. Furthermore, optimization with this technique, see figure 3.3, is
difficult since only one parameter can be optimized at a time. This can make the
optimization either slow or sometimes impossible.

Considering everything, OFAT design can be considered as an efficient sampling
strategy to get a first understanding of the system’ s response but is not
sophisticated enough to fully explain the complexity of most multidimensional
systems. For this reason it was decided against using an OFAT design in this
project.

Figure 3.3 : Schematic representation of an optimization process using (a) OFAT design and (b) D-optimal
design.
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3.3.2 Full Factorial Design

The Full Factorial Design 1s commonly used in research since it promises to cover
most of the system’ s design space. It does this at the cost of efficiency by
covering every possible combination of parameters in experiments/simulations.
For this Design to be implemented the continuous parameters of the design space
must first be discretized into a number of discrete values, called levels. If the
number of levels of each parameter are identical, the design is called Symmetric
Factorial Design else it is called Asymmetric Factorial Design. The number of
experiments that are needed for a symmetric full factorial design can be calculated
using the following relation [20]:

#Experiments = n*

While for an asymmetric design the following holds [20]:

#Experiments = Hni

k
Where n; is the level of the current parameter and k is the number of parameters
in the system. As evident from this formulation, the number of experiments that
need to be performed scales exponentially with the number for levels and the
number of parameters. Therefore, it 1s often advised to only use this method with
a two-level design when the number of design parameters 1s lower than 6. To
circumvent this problem other methods like Fractional Factorial Design have been
developed. In this design a subset (fraction) of design points in the Full Factorial
Design are chosen such that this subset still satisfies the sparsity-of-effects
principle. The sparsity-of-effects principle states that not all effects are
statistically significant and that the system’ s response is driven by the main
effects and some low order interaction terms [21].

One of the main advantages of the Full Factorial Design 1s the ability to predict
the influence of interaction terms between parameters. The reason for this is that
two arbitrary simulations in the DoE are likely to have multiple varied parameters
between them, which opens room for the interpretation of the interaction terms
between these parameters.

As previously stated, the Full Factorial Design 1s good at predicting the
system’ s sensitivity to parameters when the parameter count is low. In the
context of SLM 1t was decided to implement this in the melt pool sensitivity
analysis to process parameters. For the main process parameters, it was decided
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to investigate the influence of Laser power P, Scan Speed v and Layer Thickness
t. Furthermore, the Factorial Design is set to be asymmetric in order to be
consistent with the parameters of the experiments that will be conducted later. A
tabular representation of the investigated discrete values for these process
parameters can be found in the following table:

Laserpower [W] Scan Speed [%] Layer Thickness [um]

150,175,200 700,900,1100 0,20,30,40

Table 3.2: Process Parameters studied in the meltpool sensitivity analysis.

3.3.3 Central Composite Design

The Central Composite Design i1s traditionally used in conjunction with
metamodeling techniques like the Response Surface Method, which will be
discussed in detail in chapter 3.4. The first step in this design is to select
representative parameter ranges for each design parameter of the system. These
ranges should be carefully chosen since the Central Composite Design will impose
additional constrains on them. In a first step the corner points are added at the
extrema of the parameter ranges, which serves as foundation and is called
factorial pre-design. In the next step the star points are added to the design. The
position of these points can be determined by considering the type of the chosen
Central Composite Design [22].

There are three main types of the Central Composite Design, namely
Circumscribed (CCQC), Inscribed (CCI) and Face Centered (CCF) Designs. For a
graphical representation of each design type refer to the following figure.

e -

Circumscribed Face centered Inscribed
Figure 3.4 : Representation of the three main types of Central Composite Design with blue dots

representing the corner points and red dots representing the start points. [22]
As evident from the above figure the star points for a Circumscribed design lie
outside of the predefined parameter range. The distance from the star points to
the center 1s exactly «.

16



3 Methods and Modeling 17

According to [22] « can be calculated for each factorial pre-design using the
following relation:

1
a = [number of factorial runs]*

This sampling guarantees that the design points lie on a multidimensional sphere
and thus have the same distance from the center point. This type of DOE is called
Rotatable Design. The rotatability of a design promises that the prediction
variance of the metamodeling technique used in conjunction with that design
approach is only a function of the multidimensional radius. This definition for the
start points of a Circumscribed Design poses new restrictions on the selection of
the parameter range, since it samples design points outside of that range. If the
factorial design was set out to be the entire physical domain of a parameter (e.g.,
Laser powder from [OW-250W] ) then the Circumscribed Design would impose
unphysical design points (e.g. [-DOW]).

These are the reasons why the other design types were developed. In the Face-
Centered approach the star points are positioned at the center of each face in the
factorial space [22]. This whole design then acts as an enhanced full factorial
design and 1s used in situation where the parameter ranges are fully constrained
and can’ t be changed but the Circumscribed design would lead to unphysical
design points.

The Inscribed Design tries to mimic the properties, like rotatability, of the
Circumscribed design type while also not sampling design points outside of the

predefined parameter ranges.
N

Figure 3.5 : (a) Circumscribed Design depicting the inverse of the prediction variance as a function of
Desing Parameter x1 and x2 and (b) contours of the variance showing rotatibility of the desing. [23]
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3.3.4 LLatin Hypercube Design

The Latin Hypercube Design was developed in 1979 by Michael McKay as an
optimized method to sample design points for computer experiments [24]. The
promise of this method is its ability to cover the entire design space with a low
amount of design points and still be capable of producing representative results.
This design 1s known as a stochastic sampling method where the position of a
design point is partially evaluated by a random component. The main property of
stochastic sampling methods is their ability to create different designs even when
considering the same parameter and parameter ranges. The deviations between
these designs can reveal more nuanced attributes of the system when multiple
DoEs are performed on the same system.

In the Latin Hypercube approach the design space of a given system is divided
into equally sized intervals. In a next step, uniqueness of parameter values 1s
enforced, meaning that parameter can only take discrete values corresponding to
the value of any interval. Each interval value 1s only allowed to be present once
in the whole Latin Hypercube Design. This is done by giving each set of
parameters the same probability of being picked and picking random parameter
sets while not overlapping parameters with same values. This sampling allows an
estimation of the main effects of the system in an unbiased manner. The Latin
Hypercube Sampling thus provides the following sample matrix [26]:

_ Mij = $ij

Where P denotes the number of points, n 1s number of intervals of the parameters,
n;j are uniform random permuatations of the integers 1 to P and §;; are independent
random numbers uniformly distributed between O and 1. A commonly used
simplified version of the above definition is the Latin Hypercube Design with
centered points of P equal-probability sub-intervals [26]:

nij — 0.5

Sij == P

i=1..P,j=1..n

If the Latin Hypercube Design would be implemented only using the above
mentioned restriction nothing would stop the design from creating samplings that
don’ t fully explore the entire design space (e.g. Diagonal Design), see figure 3.6.
To further optimize the choice of design points other algorithms, like the max-min
algorithm, were implemented. In the max-min algorithm the Latin Hypercube
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sampling and an optimization algorithm that tries to maximize the minimum
distance between any two points are run simultaneously.

By implementing this secondary optimization technique, it is ensured that the
generated Design of Experiments can fully cover the design space with very few
design points and yield results that can capture most of the complexity of the
given system.

For this project a Latin Hypercube Design was chosen to create thermal
simulation design that was later used for metamodeling using Response Surface
Method. This method was run in conjunction with a max-min optimization
algorithm to ensure good space filling properties of the sampling. The results and
performance of this procedure can be found in chapter 4.5.

Figure 3.6 : (a) Two dimensional design space with poor space filling properties and (b) with good space
filling properties, sampled using Latin Hypercube Design. [25]

3.4 Response Surface Method (RSM)

According to Myers [27] the response surface method is “a collection of
statistical and mathematical techniques for developing, improving and optimizing
processes . RSM has been widely used in research to create metamodels, which
are then used to predict a system’ s response for a given set of initial and
boundary conditions. One of the main advantages of RSM 1is that it tries to find a
low order (usually 1-3 order) model that represents the given dataset, by
minimizing the mean squared error of the data. This makes the implementation of
RSM rather simple while not losing predictive accuracy when compared to other
metamodeling techniques.
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Before using RSM to find a metamodel, first a predetermined design set is
required. This design set should be generated using DoE methods and should
cover most of the design space. At the same time RSM does not require a large
amount of design points to find a solution for the model. Therefore, it 1s often used
in combination with design point minimization techniques like Latin Hypercube
Design, Central Composite Design or D-Optimal Design, which 1s not covered in
this project.

RSM 1s often used in cooperation with optimization techniques, because of the
smoothness of its response surface. The smoothness of the response makes
optimization simple and tends to approximate the global extrema of the system,
since smoothing can get rid of localized information, like local extrema. At the
same time, it is difficult for RSM to predict extrema of a system if the system’ s
true response has large gradients in the vicinity of the extrema. Therefore, a smart
choice of design points (DOE) 1s essential to the success of the RSM. For a
schematic representation of the RSM method and its optimization see figure 3.7.

Since RSM, even with application of design point minimizing techniques, requires
a good coverage of the whole design space it 1s not advised to use RSM in systems
with high parameter count (>15). If this situation arises it 1s suggested to limit the
amount of design parameters by either neglecting certain parameters that have
low influence on the system or by using methods like the Principal Component
Analysis (PCA) to find the main components of the system.
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Figure 3.7 : (left) DOE desing points sampling and Response Surface fitting and (right) optimization on the
generated Response Surface. [26]
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In this project the Response Surface Method was applied together with the
sampling strategies of Latin Hypercube Design as well as Central Composite
Design. To verify the correctness of the response surface an error analysis was
performed. This error analysis was divided into two main parts. The first part
tries to compare the prediction error of the model by training the model on a
fraction of the dataset and using the remaining part of the dataset as a testing set
for the model. The residual sum of squares can then be calculated as:

B
Epred = Z(yi - 5’\1)2
i=1

Similarly, a second approach for the error estimations was implemented, namely
the coefficient of multiple determination R?. This error can be calculated using
the following relation:

_ LG -3
2113=1(3’i - y)?
Where B denotes the number of points in the testing set, P the number of design

points, ¥, denotes the predicted response, y; the actual response and ¥, the mean
of the responses.

RZ
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4 Results and Discussion

In this chapter a summary of all results and their analysis will be presented. These
results consist of thermal simulation results of 220 simulations that were
simulated using the commercial software ABAQUS. In a first step, a brief
explanation of data acquisition is presented. Followed by the sensitivity analysis
of melt pool dimensions to process parameters. Afterwards, the results of the
sensitivity analysis to modeling parameters will be 1llustrated. Following this, the
optimization results of the model parameters will be shown.

4.1 Result Extraction

For the results acquisition a fully automated MATLAB tool was developed which
1s capable of running virtual experiments based on a DOE spreadsheet. It does this
by integrating the desired parameters from the DOE sheet into the simulation and
running that simulation in ABAQUS. For simplified implementation of AM
simulations in ABAQUS the AM-toolbox was used. After the successful
completion of the simulation, the MATLAB tool will read out all relevant data
from the generated .dat, .sta and .odb file. With this thermal data, the MATLAB
tool can start extracting the melt pool dimensions. It does this by looping through
the data for each timestep and determining a convex hull of the melt pool (Nodes
with temperature higher than their respective melting temperature). This 1s a first
approximation of the melt pool dimensions. Later in the project it was decided
that this approach oversimplifies the melt pool dimensions by being limited to the
element size (results can only occur in discretized steps). Therefore, it was
decided to interpolate between nodes to get a more representative value for the
melt pool dimensions. For the temperature definition of the internodal
22
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temperature a linear shape function was used. This approach has proven to
provide a more accurate representation of the melt pool dimensions. Furthermore,
the melt pool dimensions were averaged across the intermediate heating time
steps. This ensures that outliers in the melt pool dimension analysis don” t have
large impact on the solution.

Here, it 1s worth noting that for a quantification of melt pool dimensions it was
explicitly decided to not take melt pool length into account. This is partially
because reliable experimental data on melt pool length 1s difficult to find, since
melt pool length 1s generally hard to measure in experiments.

Additionally, this MATLAB tool was developed together with Burim Dervishaj,
who was doing his Semester Thesis in the field of microstructure sensitivity
analysis in the context of SLLM.

For a schematic representation of the tool” s workflow see figure 4.1.

3 ABAQUS
B Matlab

Excel Sheet [ Excel

itialize Si .
(DOE) Initialize Simulation Class

Start Thermal Simulation

Generate .odb, sta and .dat

” . HIES
Extract Thermal Simulation

Results

Determine Meltpool Start Microstructure
Dimensions Simulation

Microstructure Anaylsis

Figure 4.1 : Matlab Tool
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4.2 Sensitivity Analysis to Process Parameters

One of the main tasks in this project 1s the sensitivity analysis to process
parameter (P,t,v). For this purpose, a full factorial design of experiments with the
discrete values of table 3.2 were performed. In a first step it was decided to
visualize the sensitivity of the melt pool dimension to the energy density. Since
these experiments are based on single track simulations the representative energy
density was determined to be the line energy density (one-dimensional energy

density):
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Figure 4.2 : Meltpool Depth and Width plotted against the Line Energy Density.

As expected, the melt pool dimensions increase with increasing line energy
density. Higher line energy density corresponds to higher energy input into the
system. Since the surrounding gas in SLLM generally possesses low thermal
conductivity, it 1s often modeled as being a thermal insulator. This means, the
thermal energy must pass through the powder layer and the bulk material which
explains why increasing energy densities lead to larger melt pool dimensions. On
a second note, 1t 1s worth mentioning that the melt pool width seems to be affected
stronger by an increase in line energy density. This can be explained by the fact
that for the melt pool width there are two melting fronts while for the melt pool
depth there 1s only one. Considering this fact, the change in melt pool width is
still four times larger than the one of the melt pool depth.

As previously mentioned, the line energy density was chosen to be the
representative energy density for these experiments. By definition, the line
energy density only takes laser power P and laser scan speed v into account, see
formulation in chapter 2.3. Thus, this analysis delivers no information of the
impact of other parameters, like layer thickness t. In order to get a illustrative
definition of this influence a secondary analysis was conducted. In this analysis
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the layer thickness was plotted against the melt pool dimensions with different
line energy density levels. The results of this analysis can be found in the
following figure:
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Figure 4.3 : Meltpool Width and Depth plotted against layer thickness for different line Energy Density
levels.

From the above figures the previously defined trend 1s still visible, where
increasing line energy densities lead to increasing melt pool dimensions. The left
figure suggests that there 1s no distinct trend for the melt pool depth to change
when increasing the layer thickness. On the right figure a clear secondary trend
can be seen, where increasing layer thicknesses lead to wider melt pools. To stay
consistent with the dimensions of the problem, where the melt pool depth has one
melting front and the width has two, the scales of each plot were adjusted to
satisfy the relation 2:1.

This secondary trend can be concluded by the fact that increasing layer
thicknesses lead to lower overall thermal conductivity, since the powder has
substantially lower thermal conductivity when compared to the bulk material.
This reduction in thermal conductivity promotes localization of thermal energy
in the vicinity of the heat source. With this localization of thermal energy, it 1s
more likely that the temperature in the vicinity of the heat source will reach
temperatures higher than their melting temperature. As a result, the melt pool
width becomes larger.

The independence of melt pool depth to layer thickness 1s a byproduct of the
modeling assumptions, in which vaporization effects were neglected. These are
the main effects for the formation of keyhole phenomena, in which the melt pool
1s depressed (increasing the melt pool depth substantially).
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4.3 Performance comparison between DOEs

For the generation of the metamodel two different DOEs were implemented and
their performance was initially observed and compared. As previously mentioned,
two error metrics were implemented, see chapter 3.4. The two chosen DOEs
consist of Circumscribed Central Composite Design and Latin Hypercube Design.
In a first step, an experiment plan was developed for each DOE. This plan
consisted of 30 simulations each. For both approaches a Response Surface was
generated and the errors were extracted. The following figure shows errors for
each model:

000 ; Infeasible Model Region

LHD ccb LHD ccb

Figure 4.4 : (left) Prediction error model and (right) coefficient of multiple determination of each model.

The results from this analysis yielded that the model with Latin Hypercube
sampling was outperforming the model with CCD in both categories. In the left
figure it 1s evident that the LHD model possess lower prediction error when
compared to the error of the CCD model. At the same time, the right figure
suggests that the LHD model can predict almost 80% of the system’ s variance
while the CCD delivers infeasible results. If the coefficient of multiple
determination is higher than 1 or negative, 1t is said that the model is unphysical
and probably needs more design points to make a realistic prediction.

From this it was concluded that LHD 1is the superior approach for further
investigation of the system since CCD requires much more design points than LHD
in order to deliver representative results. It 1s still recommended to further
investigate the properties of CCD since it commonly used in combination with
RSM. In this project however, it was decided to drop the CCD due to time
constraints.
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4.4 Sensitivity Analysis to Modeling Parameters

The second main task of this project was the sensitivity analysis to modeling
parameters, namely Goldak heat source parameters and absorptance. For
validation of the obtained results and for the definition of a cost function,
experimental data from A. Keshavarzkermani et al. [28] was used. Hereby the focus
was set to one specific set of process parameters:

mm
P =200W,v = 1OOOT,t = 0.04mm

For a general multidimensional system, it is advised to visualize the system’ s
response in order to get an initially understanding of the system s behavior.
Therefore, the modeling parameters were first plotted against a comparison term.
This comparison term tries to encapsulate all parameters in one definition and
provide information about the absorbed energy density:

_ Absorptance
~ Goldak Volume

G

The generated plots can be found in the following figure:

0.35 >0.1 0.35 >0.1
= Experimental Data = Experimental Data
0.09 0.09
€ . £ T . T
£ 0.25 . E £ 0.25 . E
= © = o
£ 007 & £ 007 g
8 ’ £ 8 e’ £
= 5 3 B
go.15r . . 005 & g 05y . . . 005 %
s g = | 3
> LJ e . e
g o *p 3 g Pete oy &
- e LI . . ®mPfoe e . .
D) o o 0.03 - ° 0.03
005 qep® et® o ma — K v .! T .o."- 005f 0% -v.‘. ..F‘IB":-. . .f _" .:il O
? L .-'l ‘
o oo
\ \ \ I I I \ \ \ | <0.01 \ I \ \ \ | <0.01
Q 0 o ) ) o Q o o ) ) o
> & o® oy & > K o® oy &
Absorptance/GoldakVolume [mm'3] Absorptance/GoldakVolume [mm'3]
0.35 >0.2 0.35 >0.9
= Ex perimental Data == Experimental Data
0.18 0.75
T . £ E .
E 0.25 . £ H 0.25 .
o = =
;g_ 0.14 % g 0.6 §
© . . &
3 = 3 g
[+
gois 5 R . 012 u; g 015 . 045 &
=4 E =
o * P ° ] e cp *
= '] . [ © = o g . .
 ipntnt g s 0.0 - .'.H-.—-..—._'n-‘....'_-.—-_ 03
005 sl a * s S «® 0.05 -:ﬁ;:t I S . .s s
L - e
e .}‘
" <0.02 <0.15
Q ) o o N S Q » & & & &
® & o P W ® o o e S
Absorptance/GoldakVolume [mm'3] Absorptance/GoldakVolume [mm'3]

Figure 4.5 : Meltpool Depth plotted against absorbed energy density €; with colormap for (top left) Goldak
Parameter a, (top right) Goldak Parameter b, (bottom left) Goldak parameter ¢, and (bottom right) absorptance
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If a parameter has a significant influence on the system’ s response, there is a
high chance for that parameter to show a trend in the previous figures. A trend
can be characterized by the fact that similar parameter values consistently lead
to similar responses. The analysis of these figures concluded that no distinct
trend was observed for the Goldak parameter a and c,.. On the other hand, it was
concluded that there is a trend for the absorptance and Goldak parameter b. This
1s consistent with the expectation that the depth parameter of the Goldak heat
source model has a strong influence on the depth of the melt pool.

For b 1t 1s evident (from the top right graph in figure 4.5) that high values for b
tend to consistently overpredict the melt pool depth or not form a melt pool at all,
when combined with low values for the absorptance. At the same time low values
for b tend to always underpredict the melt pool depth. For the absorptance a
similar trend can be observed where low values consistently underpredict while
high values consistently overpredict the melt pool depth.

For further investigation these parameters were plotted isolation where the
absorbed energy density was reduced to a one-dimensional representation:
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Figure 4.6 : Meltpool Depth plotted against the one-dimensional absorbed energy density €, with colormap
for (left) Goldak parameter b and (right) absorptance

In these figures a clear trend can be observed for b. High values for b seem to have
large scatter around the experimental data while lower levels for b seem to
decrease the amount of scatter. At the same time, it can be seen that intermediate
values for b [0.028-0.05] seem to produce the best results. From the right figure it
1s evident that the same trend is observed for the absorptance, where high values
consistently overpredict melt pool depth while low values almost always
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underpredict the melt pool depth. This can be attributed by the fact that higher
values for the absorptance increase the captured thermal energy, which leads to
overall higher energy density in the material. For the absorptance the optimal
values seem to be in the range of [0.3-0.6].

The same procedure was implemented for the melt pool width with the following
results with the absorbed energy density term C;:
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Figure 4.7 : Meltpool Width plotted against the absorbed energy density €; with colormap for (top left)
Goldak Parameter a, (top right) Goldak Parameter b, (bottom left) Goldak parameter ¢, and (bottom right)

The data for melt pool width seems to express higher scatter around the
experimental data. Taking that into account, some clear trends can still be seen
for the Goldak parameter a and the absorptance. Where high values for a tend to
overpredict the meltpool width while low values underpredict the melt pool width.
For the absorptance a weaker trend could be found where high values overpredict
and low values underpredict the melt pool width. For the other two parameter no
distinct trend could be observed and they were discarded as being not significant
for the melt pool width.
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For a deeper understanding of the relevant parameters, they were again plotted in
1solation with the following one-dimensional absorbed energy density:
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Figure 4.8 : Meltpool Width plotted against the one-dimensional absorbed energy density €5 with colormap

for (left) Goldak parameter a and (right) absorptance

In this visualization clear trends are visible for both parameters. For the Goldak
parameter a high scatter is observed for high and low values, while low scatter is
observed for medium values. For the absorptance a different trend is observed
where the values in the lower range [0.3-0.4] seem to produce the best results while
values above that threshold overpredict and values below that threshold
underpredict the melt pool width.

The sensitivity analysis suggests a strong dependence of melt pool depth to the
Goldak parameter b and absorptance. On the other hand, it also suggests a strong
dependence of melt pool width to Goldak parameter a and absorptance. Both
claims are consistence with the expected results, since both Goldak parameter are
aligned with the measured directions. The observed scatter seemed to be higher
in the melt pool width data as opposed to the melt pool depth data. No clear
explanation for this difference in scatter level could be found. Additionally, the
Goldak parameter c, 1is suggested to not have any significant influence on the melt
pool dimensions. This coincides with the expectation since no measurements on
the melt pool length were conducted.
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4.5 Optimization of relevant Modeling Parameters

For this part a response surface was created with the data gathered from the 220
simulations, which were sampled using the Latin Hypercube Design. The cost
function used for the optimization was defined as follows:

Cost = |MD — EMD| + |MW — EMW |

Where MD denotes the measured melt pool depth, EMD the experimental melt pool
depth, MW the measured melt pool width and EMW the experimental meltpool
width.

In a first step the model was used to verify the claims made in the previous
chapter. For this purpose, a full second order regression model was formulated
using RSM and the P-Values of each term were plotted. The P-Value of a term
represents the chance that this specific term has no significant influence on the
system’ s response:

100

Significance Threshold

P-Value [%]

3 o g B\CF: ,S-'a 6‘0 G»g( ",309 ,3"0 'auc,‘ »‘309 ‘sc,‘ 4--309 *-'355
xS ? 0 o

Figure 4.9 : P-Values for all terms in the full second order model with significance thershold at 5%.
From this figure it is evident all terms with ¢, seem to have no significant
influence on the system’ s response while higher order terms of a,b and
absorptance seem to have very significant impact. The model also suggests a
nonlinear relation between the system’ s response and the parameters a, b and
absorptance. The figure also shows a tendency that the absorptance is the most
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important parameter in the model. All these observations are consistent with the
claims made in the previous chapter.

In a second step an optimization on the generated response surface was run. The
optimization on the surface was broken down into multiple sub-optimizations and
the results of these optimizations were then combined to give a hint for what
values are expected to deliver optimal melt pool dimensions. The results of these
optimizations are summarized in the following table:

Table 4.1: Optimized values for modeling parameters a, b, ¢, and absorptance

a [mm] b [mm] ¢, [mm] absorptance [-]
[0.025-0.05] [0.02-0.04] Not Significant [0.35-0.45]

These results are 1dentical to the expected values obtained from the sensitivity
analysis in the previous chapter.
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5 Conclusion and Outlook

In this project the sensitivity of melt pool depth and width to process parameters
and modeling parameters was conducted. From the sensitivity analysis to process
parameters it could be concluded that increasing line energy densities lead to
increasing melt pool depth and width. This result is consistent with the
expectation that increasing energy leads to increasing melt pool dimensions. At
the same time, since the line energy density carries no information about the
dependence on layer thickness, another sensitivity analysis was performed. This
analysis suggested that increasing layer thicknesses lead to increasing the melt
pool widths while having no impact on the melt pool depth. The independence of
the melt pool depth was attributed to the fact that vaporization phenomena and
kevhole formation were neglected in this study. The other reason is that the
absorptance was considered to be the same in the powder and dense material. The
dependence of melt pool width to layer thickness was explained by the fact that
increasing layer thicknesses lead to a reduction in the overall thermal
conductivity of the system, which promotes localization of thermal energy in the
vicinity of the heat source.

In the next step of the project a comparative study between Latin Hypercube
Design and Circumscribed Central Composite Design was conducted and it was
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concluded that the LHD exhibits superior performance. Furthermore, the CCD
delivered infeasible results which hints that CCD requires more design points than
LHD to vield representative results. This performance difference can be
explained by the superior space filling properties of the Latin Hypercube Design.

In the sensitivity analysis to modeling parameters a strong dependance of melt
pool depth to the Goldak parameter b and absorptance was observed. Furthermore,
the meltpool width showed a strong dependence on the Goldak parameter a and
absorptance. With visualization techniques clear trends of all relevant parameters
were 1llustrated and optimal value assumption could be made.

For the validation of the claims made in the sensitivity analysis a metamodel was
created using LHD and RSM techniques. The prediction of the significant
variables made by this model coincides with the suggestions from the sensitivity
analysis. In the last step, optimization was conducted on the response surface and
the optimized values were consistent with the values obtained from the sensitivity
analysis.

For future research it is suggested to change the thermal conductivity of the
model from isotropic to fully anisotropic or to anisotropically enhanced, see [29].
Additionally, it 1s suggested to change the absorptance from a constant value to a
temperature dependent value. Hereby the limits of the absorptance should be kept
in the optimal range, while varying the temperature dependency terms. For the
full quantification of such a complex problem a thorough investigation of DOE
methods 1s suggested.
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