ETH zürich

Validation of a Rheological Model for Non-**Newtonian Fluid Flow**

René Widmer¹, Alejandro Lopez², Cecilia Persson², Luca Cristofolini³, Stephen Ferguson¹

¹ETH Zurich

²Uppsala University

³Rizzoli Orthopaedic Institute, Bologna

Percutaneous Vertebroplasty

- Procedure outcome is controversial:
 - Buchbinder et al., N Engl J Med, 2009
 - Kallmes et al., N Engl J Med, 2009
- Source of **uncertainty**:
 - Bone cement?
 - Treatment strategy (biomaterial location and volume)?
 - Experience of the clinician?
- ⇒ Motivation: develop *in-silico* models for the
 - Simulation and investigation of cement flow in trabecular bone
 - Optimization of the treatment outcome and risk

Vertebroplasty Effectiveness Assessment

Rheological Model for Non-Newtonian Fluid Flow in Vertebral Trabecular Bone

Darcy flow:

$$\underline{q} = \frac{\underline{\underline{k}}^s}{\bar{\mu}} \nabla p$$

Reynolds number \overline{Re} :

$$\overline{Re} = 4 \frac{\rho \left\| \underline{q} \right\|}{\overline{\mu} S_{v}}.$$

$$-\operatorname{Re} \nabla p' + \nabla^2 \underline{u}' = \operatorname{Re} (\underline{u}' \cdot \nabla) \underline{u}'$$
$$\nabla \cdot \underline{u}' = 0$$

Reynolds number Re:

$$Re = \frac{\rho u_0^{2-n} D^n}{C}$$

$$\frac{Re}{Re} = \frac{\iiint Re(x, y, z) dx dy dz}{\iiint dx dy dz}$$

Slattery-Whitaker theorem S. Whitaker et al., 1969

ETH zürich

Experimental Validation

Experiments performed at the Istituto Ortopedico Rizzoli, Bologna, with the support of L. Cristofolini

Experimental vs. Predicted Cement Pattern

Results – Error Quantification (Hausdorff Distance)

Results - Significance of Error Improvement

Prediction errors of the anatomical groups

Prediction errors of the intermixed groups

Experimental Validation – Surrogate-Bones

- Specific aims
 - Evaluation of bone cement and marrow substitutes
 - Design of an experimental setup to perform injections under multi-planar fluoroscopy
 - 3D-Reconstruction of the spreading pattern
 - Quantitative comparison to computational flow simulations
- Vertebral body surrogates fabricated by 3D printing technologies¹ (EUR 640.-/sample)

Sun Gase abone

Experimental Setup

René Widmer et al. Institute for Biomechanics

Flow Simulations

- Tetrahedral mesh derived from downsampled µCT stack (approx. 100K elements)
- BVTV, DA, Tb.Sp and Tb.Th
 - determined for cubic regions
 - evaluated at nodes of FE mesh
 - Interpolated to integration points
- Simulations performed
 - 2 specimens (#4022 L1 and #4024 L1)
 - 4 permeability models

•	BVTV	("BVTV")
•	BVTV + DA	("DA")
•	BVTV + DA + Tb.Sp	("Tb.Sp")
•	BVTV + DA + Tb.Sp + Tb.Th	("Tb.Th")

3D Reconstruction vs. Fluoroscopy Simulation

Perspective Registration

Transformation model:

$$\underbrace{\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}}_{\underline{x'}} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\underline{T}} \cdot \underbrace{\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}}_{\underline{x}}$$

- Transformation matrix
- 3D center of mass points in simulation domain
- \underline{x}' : 2D center of mass points in experimental domain
- \rightarrow Solve for T

Perspective Projections

Error Estimation

Distance transformation: $\varepsilon = DT(red, green)$

DT: Distance transformation

Red Outline of **predicted** cement bolus projection

Green: Outline of estimated cement bolus projection

RMS Error vs. Morphological Information

Discussion / Conclusions

- 3D reconstruction from fluoroscopy data delicate task
- Validation indicates RMS prediction error of 2...3 mm
- ≈2x RMS error of cadaveric study
 - registration error
 - micro-architectural mismatch of the bone surrogates
 - non-Newtonian fluid models
- Error depends on
 - injection volume (smaller if cement boundary is far away from inlet and outlet regions)
 - permeability model
- Costs

Department of

Health Sciences and Technology

Outlook (I) – 3D Bone Surrogate Models

Outlook (II) – 3D Bone Surrogate Models

Simulation

Experiment

A. Francis / University of Leeds

Acknowledgements

Financial support has been provided by the European Union (project FP7-ICT-223865-VPHOP), and is gratefully acknowledged.

