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Stress, strain and damage 

• Many fracture/yield/plasticity criteria are based on 
stress (or strain) values 
– von Mises, Tresca, Puck, Logan-Hosford 

 
 

• Local stress values are difficult to obtain for a 
component under service load 
 

• Use defined stress cases in model systems first 
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Case study: Torsion tube 

A. Puck, H. Schürmann / Composites Science and Technology 62 (2002) 1633–1662 
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Volume data 

• distribution of voids from x-ray CT 

E. Hack, M. Feligiotti, R.K. Fruehmann, and J.M. Dulieu-Barton, Failure and 
damage in CFRP torsion tubes, Photomechanics, Montpellier, 27-29 May 2013 
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3D-model for damage predicition  
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Case study: FRP injection moulded component 

Mount for saw 
notch method 

Local measurement of 
surface strains with RSG-
Rosette 

Specimen with 
direction of 
cracks induced 
by residual 
stress 
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RSG: local strain data 
• Measured at increasing notch depth 

– after cooling down (thermocouple)  
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DSPI: global strain data 

Strain values for saw notch 
0.0 – 0.5 mm 
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DSPI: strain reversal 

Strain values for saw notch 
0.5 – 1.0 mm 

Strain values for saw notch  
1.0 – 1.5 mm 
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Surface strain 

• Since x-ray CT cannot be used outside the lab 
volume data and volume strain are not accessible 

• Yet measurement of surface strains is feasible,  
in situ and under defined load (stress) 

• Some 3D information can be obtained destructively 
• Commonly therefore, surface strain values are 

compared with numerical model data 
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Modeling quality 

• Numerical 3D-models calculate strain/stress fields 
and explain failure load and mode 

•  What are model quality issues? 
– Appropriate physics 
– Code verification 
– Appropriate meshing 
– Appropriate boundary conditions 
– Convergence of solution 
– Robustness of solution 
– Correctness of solution 
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Henry Crew (Editor), The wave theory of light: memoirs by Huygens, Young and 
Fresnel,  American Book Company,  New York 1900. 

• This statement refers to a physical theory, but… 
• could a similar statement hold true for numerical 

models?  
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Faithful representation 

• «Devise a dynamical model» 
– set-up a numerical model 

• «Duplicate the phenomenon» 
– explain experimental outcome 

• «Completeness of explanation» 
– quantify deviations  
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Faithfulness and validation 

• VIM definition (JCGM 200:2012) 
 

• Validation is defined as the 
provision of objective evidence that a given item 
fulfils specified requirements adequate for an 
intended use. 

 
• Intended use: Fitness for purpose 
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«Duplicate the phenomenon»:  
Comparison of model and measurement data 

• General concept in analogy to 
metrological compatibility of measurement results 

• VIM 2012: 
“property of a set of measurement results for a specified 
measurand, such that the absolute value of the difference of 
any pair of measured quantity values from two different 
measurement results is smaller than some chosen multiple of 
the standard measurement uncertainty of that difference” 

 
 

Single measurement value criterion! 
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Point-wise comparison of data fields  

• Data sets are expressed as N-dimensional vectors  
• An overall quantitative quality criterion is a must  

– e.g. when different FEA results based on different models or 
different parameter values are available.  

• The following slide shows an indicative list of possible 
quality criteria (“cost functions”, “distance measures”).  
– All summations are weighted summations, but we suppress the 

weighting factors for clarity.  
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Quality criteria for a set of points 

• rms criterion:  ∑
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Point-wise comparison 

• Comparison can be performed point by point and 
the criterion be applied 

• Involves step of point matching and data 
interpolation 

Measurement points (red) 
vs. FEA grid (lines) 
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Unequal number of points? 

• Point-to-point comparison requests 
– Missing data points generated by intra-/extrapolation 

• Is there a different way of comparing unequal sets 
of data? 

• Idea: Parameterize field of data points and compare 
the reduced data 
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Orthogonal basis systems 
• For circular domain : Zernike polynomials 
• For rectangular domain:  

– Fourier components 
– Orthonormal polynomials    
– Discrete version 
– e.g. discrete Chebyshev polynomials 
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Normalisation issue 
• The coefficients should not depend (explicitly) on 

number of points. 
 

• If ε(p) is a constant 
 
 
 
thus                      and    
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Image decomposition 

Residuals for a 20 term 
reconstruction of DSPI map 
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Methodology to compare experimental 
and simulation data  

• The basis functions for FEM and opt are calculated 
on the respective domains 

• The coefficients anm and bnm have the same 
dimension as the measurand, viz. strain 

• To display the differences it is best to sort the 
coefficients according to their value 
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Compatibility of data 

• based on the standard measurement uncertainty 
 
 

• It can be shown that for orthonormal 
decomposition the uncertainties of the coefficients 
are equal for all nm. 
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Comparison of coefficients 

• Orthonormal Chebyshev decomposition 
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Prospect: non-rectangular domains 

ADVISEADVISE W. Wang and J.E. Mottershead, Adaptive moment descriptors for full-field 
strain and displacement measurement , J Strain Analysis 48 (2012) 16-35  
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Summary 

• Motivated the use of full-field (surface) strain data 
based on failure criteria 

• Viewed model validation in analogy to  
metrological compatibility of measurement results 

• Suggested a method to compare full-field data sets 
by data reduction 

• Suggested a criterion to quantify model quality for a 
validation test  
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