

Computational Design-to-Fabrication: The Role of Simulation

Prof. Dr. Kristina Shea

ENGINEERING DESIGN AND COMPUTING

Engineering Design and Computing Lab (EDAC)

Objectives

- Enable the design of more innovative and complex engineered systems and products through new computational design models, methods and tools
- Automate design and fabrication processes
- Integrate research in practice

Structures

Consumer Products

Mechatronics

Additive Manufacturing

Research Areas

Computational Design Synthesis and Optimization

Computational Design-to-Fabrication

Model-Based Design and Systems Engineering

Synthesis vs. Analysis

Analysis / Simulation:

Breakdown of a system into its elements and their interrelationships. The construction of a mathematical model to reproduce the effects (behavior) of a phenomenon, system, or process.

Synthesis:

The design and combination of fundamental components, or building blocks, to produce a unified and often complex system behavior that satisfies or optimizes design requirements.

Motivation for Computational Design Synthesis

Why Automate Synthesis and Design?

Faster. Automate

Better. Explore Solution Spaces

Cheaper. Optimize

Keep design and innovation internationally competitive!

Basic Research Approach

MEMS Synthesis - Meandering Resonator

- Center mass supported by four springs
- Synthesis of beam topology, geometry and dimensions of beams
- Min error in frequency and device area subject to stiffness and fabrication constraints

MEMS Synthesis - Sandwich Resonator

Objectives:

- target operational frequency,f = 25 MHz
- minimize motional resistance, R_m
- maximize quality factor, Q

MEMS Synthesis - Sandwich Resonator

Engineering Design Grammars

Structural Topology Optimization

Thompson (1914)

Prager truss (1977)

Structural Topology and Shape Annealing

Class I (1995)

Class III (2004)

Class VI (1999)

Design Brief

Noon Mark Cantilever Support

Key parameters and constraints

- max tip displacement <= 2 mm (1/2317 of cantilever length)
- thin, "sleek", visually light novel design
- stainless steel circular hollow sections with OD < 90 mm
- placement in stones and capability for adjustment
- 13 load combinations (self-weight, wind, thermal, support settlement)

Structural Grammar - Class III Truss-Beams

Size Transformation Rule

- o free point
- fixed point
- f free line

Topology Transformation Rules

generate a planar truss

copy + geometrically transform

brace

(class I)

Optimization Model

minimize:

$$\operatorname{mass}(i, \mathbf{l}, \mathbf{a}) = \sum_{i} (\rho * l_i * a_i),$$

where i = 1...num members; l = vector of member lengths;

 \mathbf{a} = vector of gross area for each member, $\mathbf{a}_i \in \{s_1...s_{\text{max available sections}}\}$

subject to:

 $\delta_n \le 0.002 \text{ m}$

 $\sigma_i \le 123 \text{ MPa}$

 $F_i \le \pi^2 E I_i / l_i^2$

 $\lambda_{\text{compression}} \leq 180$

 $\lambda_{\text{tension}} \leq 220$

 $\lambda_{\text{bracing}} \le 200$

 $I_{\text{max}} = 5.0 \text{ m}$

 $I_{min} = 0.03 \text{ m}$

 $\theta_{min} = 1$ °

(max vector displacement for joint n)

(compressive/tensile allowable stress)

(critical buckling force)

(compressive slenderness ratio)

(tensile slenderness ratio)

(bracing slenderness ratio)

(max member length)

(min member length)

(min angle between members)

Design Generation and Development using STSA

- generate optimised design alternatives
- select 1-2 designs
- analyze full set of 13 load combinations
- re-optimize section sizes and one joint position for
 - wider and taller support; reduced skew
 - reduced section OD < 90 mm
 - vertical wind load down
- select 1-2 designs
- full check according to BS and Eurocode

Computational Design Optimization in Building Design

The Pinnacle London 2013

The Pinnacle - Optimization Model

Minimize
$$N = \sum_{S=1}^{n} L_{S}$$

Subject to $F_{bracing} \leq F(\max)_{bracing}$
 $M_{beams} \leq M(\max)_{beams}$

3 x 10⁴⁸ possible designs!!!

Automated Structural Design Generation and Optimization

Method: stochastic pattern search with integrated structural simulation

The Pinnacle - Solution Space Exploration

7,000 kN
Bracing force limit

8,500 kNBracing force limit

10,000 kN Bracing force limit

750 kNm Bending limit

262 bracing elements

216 bracing elements

500 kNm Bending limit

296 bracing elements

248 bracing elements

384 bracing elements

400 kNm Bending limit

Further Method Development

213 elements bi-directional method

genetic programming

CAD-Based Shape Grammar Interpreter

An interactive environment for parametric shape rule definition and generative design.

http://sourceforge.net/projects/spapper/

Example: Vehicle Wheel Rim Grammar

Vehicle Wheel Rims - Initial Shape

Vehicle Wheel Rims – Example Generated Solutions

Robot Arm Concept Generation – Parts

CAD-Based Generative Shape Design - Examples

Customized Robot Arm Concepts

Cooling Fins

Flexible, Autonomous Fixture Device

- Autonomous and flexible workholding for low volume production
- Flexible pneumatic vise with exchangeable and adaptable jaws
- Autonomous generation of new jaw designs by:
 - Computational design synthesis (using spatial grammars)
 - Verification of design candidates (using FEA, ...)

CAD Model of Flexible Vise

Prototype of Flexible Vise

Automated Fixture Design

From Static Structures to Mechatronic Machines

Contact Details:

Prof. Dr. Kristina Shea

Engineering Design And Computing

Laboratory

ETH Zürich

Tannenstrasse 3

8092 Zürich

Switzerland

Phone: +41 44 632 08 42

Fax: +41 44 632 13 96

Email: kshea@ethz.ch

Research Team:

Corinna Koenigseder

Benjamin Kruse

Clemens Muenzer

Dr. Tino Stankovic

Frtiz Stoekli

Thomas Gmeiner (TU Muenchen)