

Validation of thermo-mechanical deformation of an in-orbit antenna

Third International Workshop on the Validation of Computational Mechanics Models

Alexander Ihle & Olaf Reichmann

Table of Contents

Part 1: Technical Concept

Part 2: ESPI

Part 3: STANT Thermo-Mechanical Deformation Test and Modeling

Part 4: Conclusion and Outlook

Highly Stable Antenna Technologies (STANT)

- ESA ARTES 5.2 activity
- Ka-band & Q/V-band
- 1 to 19 RF beams, European coverage
- Compact
- High thermo-elastic stability
- High stiffness to mass ratio
- Low heat transfer between S/C and antenna
- Neither reflector coating nor sunshields
- For CFRP <u>&</u> Alu-satellite top decks
- Mass below 10kg
- 1 eigenfrequency > 100Hz
- In-orbit deformation < 20µm RMS.

Gregorian dual reflector configuration

STANT Testing

Electro Specle Pattern Interferometry

- Optical measurement:
 - Illuminate target with pulsed laser
 - Record back scattered light "Speckle Pattern"
 - Compare with reference beam "PhaseImage"
 - Phase image remains constant as long as geometry between laser, camera and object does not change
- ESPI data analysis:
 - Motion of object causes change of phase image
 - Difference of two phase images includes rigid-body and elastic displacement) information of object in terms of interferometric fringes "Interferogram"
 - Unwrapping and post processing of the interferograms
 separates rigid-body motion from elastic deformation part
 by best fit calculation for rigid-body part
- Accumulation of many successive interferograms results in total deformation map

ESPI optical path

Interferogram

Part 3: STANT Thermo-Mechanical Deformation Test and Modeling

STANT TED Test Campaign

STANT Antenna Reflector

Thermal Cycling and Thermo-Elastic Test

- 3 in vacuo cycles from -120 C to +120 C
- TED-measurement of main reflector.
- Challenges
 - Any rigid-body motion must be limited in magnitude
 - Vibration isolation of the chamber
 - Thermal isolation of fixture from chamber
 - Window (spectral transmissibility for external sensor)
 - Reflector surface (optical contrast at reflector level)
 - Data processing
- Measurement via ESPI
- Results
 - No failure and low TED

Thermal Analysis

- Correlation of thermal analysis and measured temperatures of TV cycling test
- Mapping of temperature results to structural model and analysis of corresponding deformations

Simulated temperatures on MR at end of cycle 1

Measured temperatures on MR at cycle 1

Simulated temperatures on MR at cycle 1

Initial Correlation

Qualitative comparison!

Validation Procedure

Validation Procedure (STANT)

Selection of region of interest to be used for image decomposition

Validation Procedure (STANT)

Decomposition of ESPI UE=0.002

Decomposition of FEM UM=0.006

Validation Procedure (STANT)

Ucal=0.003

UE=0.002

$$u(s_E) = \sqrt{u_{cal}^2(\varepsilon) + u_E^2}$$

Part 4: Conclusion and Outlook

Conclusion

Model representation

- Reflector deformation is sensitive to bonding layer
- Bonding layer varies across circumference of I/F
- Varying layer is not represented in model
- VANESSA method might help, e.g. in parametric analysis

Region of interest

- Test was not intended to be used for VANESSA methodology
- No complete test data (some regions missing)
- Orientation and alignment of test data not known
- Test data and FEM data input files don't match (size, maybe orientation, maybe alignment)
- ROI cannot be selected properly, best guess approach

Outlook

- References on structure would help for ROI selection
- Alignment and orientation should be well known
- Representative/sufficient test data coverage
- Consider for VANESSA methodology during test planning and test activity

Thank you for your attention.

MLI

Instruments Launcher and

Re-entry Components

Radiators

Structures

Antennas

Reflectors

Deployable Structures

