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Introduction
Background & Motivation

Increased Complexity on the Material & Structural System level

Functionally Graded Materials

Pedestrian Vibrations

(source: MIT Media Lab) Millennium Bridge
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Introduction
Quest for Sustainability
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Introduction

Engineering Efficient Infrastructure

Repairing a Defective System
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Introduction

The importance of Modeling

Main Challenges

ﬂ Incorporating Uncertainties

* Model Validation via
Sensory Feedback

‘W'm Deliver accurate Reduced ‘
Order Models - Metamodels '

‘t Increase Computational Efficiency
at a lower Computational toll -
the Multiscale formulation
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Structural Health Monitoring (SHM)
Structural Health Monitoring

Sensory feedback via SHM systems.

Force Displacement Strain and tilt

Acceleration Meteo Data from GPS




Structural Health Monitoring (SHM)

System ldentification in SHM

Link between acquired data & modeling of structural behavior?

System Identification

Developing or improving the mathematical representation of a physical system using
experimental data.

analytical or numerical
model

.A}Mﬂ,w.w‘u"w«“‘

excitation dynamic response

Model

Time domain
x[f] = Ax[t-1]+Bul1]

L Forward Problem (analytical/numerical model exists a priori)

ambient vibration [ = Cx[]+Dulf]

excitation response

Structural
—_— . I —>{ | Frequency Dom
and/or identification H
known applied forces T
Modal space
, D
~——————

Inverse Problem (structural model is obtained from experimental data)

9/43



Structural Health Monitoring (SHM)
Reality Check

Challenge #1: Fusion of heterogeneous data, sensor noise



Structural Health Monitoring (SHM)
Reality Check

Challenge #2: Lack of a-priori knowledge of the system itself

- . Nonlinearities are taken into account
Structural system is characterized by <
parameter uncertainty A o, 4
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The behavior of the modeled structure The impact of different types of excitation
has to be examined for a range of (of different magnitude and/or spectral

structural characteristics. content) should also be examined.




Incorporating Uncertainties
Optimal Bayesian Solution

The Task: How to estimate x given partial, noisy observations of the response y?

Predict

Assuming the prior p(xq) is known and that the required pdf p(xx_i|y1x—1) at time k—1 is

available (Chapman-Kolmogorov equation):

POXk|y1x—1) = /P(xk\xk_l)p(xk—l\ylzk—|)dxk—1

Update

Consequently, the prior (or prediction) is updated using the measurement y; at time k(Bayes

Theorem):

pxlyie) = Py, yix—1) =

POr) p el yia—1)
POx[y1r-1)

Measured

Response Motions
Response Motions |

Unknown

System

Adjustable

Model of Nonlinear.
Structural System

Nonlinear Structural
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Incorporating Uncertainties

Bayesian Approximation

Particle-based Bayesain approaches - Working principle

posterior mean

b ]
. Y L and variance
prior mean and>~~_ _ L.

variance R -~

Chatzi, E. N. and Smyth, A. W. (2012), “Particle filter scheme with mutation for the estimation of
time-invariant parameters in structural health monitoring applications”, Journal of Structural Control and

Health Monitoring.



Incorporating Uncertainties Tackling Model Uncertainty

Application #1: Treating model Uncertainty in real-time

On Line Parametric Identification of a Non-Linear Hysteretic System with
Model Uncertainty

Experimental Setup at USC

E.N. Chatzi, AW. Smyth and S.F. Masri, " Experimental application of on-line parametric identification for
nonlinear hysteretic systems with model uncertainty”, Journal of Structural Safety, Structural Safety, Vol.

32, No. 5. (24 September 2010), pp. 326-337.



Incorporating Uncertainties Tackling Model Uncertainty

Nonlinear Hysteretic Joint

Non typical hysteretic behavior
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A physical model of the system is formulated on-the-fly:

2=21 ®{c1 x| x(sgn (xx) + 1) /2 + ¢y sinh (apxsgn (&) £}, 1=5



Incorporating Uncertainties Field Implementation: Tall Tower

Application #2: Actual Large Scale Structure

Case Study - Tall Tower Structure

E. Chatzi, C. Fuggini, “Structural identification of a super-tall tower by GPS and accelerometer data fusion using a multi-rate Kalman filter”, 3th

International Symposium on Life-Cycle Civil Engineering (IALCCE 2012), October 3-6, 2012.



Incorporating Uncertainties Field Implementation: Tall Tower

Quantifying Uncertainty

Challenge: How to Quantify Uncertainty through efficient computation?

Motivation

The simulation of dynamic response through FE models requires excessive
computational resources particularly for complex, large structures. The problem is even
more pronounced when:

@ the structural system is characterized by parameter uncertainty

@ detailed geometrical descriptions are adopted

@ nonlinearities are taken into account

FE mode

excitation

|
““U\)v'4\}‘u'q“f'Wv”JW‘J"J”UﬂU'V1*rWm

dynamic response

This is especially important for the case of inverse problem formulations or
Reliability Analyses where a large number of forward runs is necessary.



The Metamodeling Problem
One Step Further - The Metamodeling approach

Random input parameters FE model Time history loading responses
fE),

X

Acceleration (m/s?)

E (GPa)
fio,)

Time (5)

Mechanical & geometric
properties
A

:

Excitation

0, (GPa)

Identify a reduced order model
that may simulate the dynamic behaviour
of the detailed FE model

fio,

==

Problem definition

Consider a structural system represented by a numerical model .#Z characterized by
uncertain input parameters & = [&,&,,...,Ey]" with known joint pdf f(&€). The
dynamic response of .Z to a given input excitation x[t,£] will also be a random variable:

y[t, &) = A (x]t,E],E), t=1,2,....T

A metamodel . must be able to predict and/or simulate the detailed numerical model
results in a computationally inexpensive way and with sufficient accuracy.
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The Metamodeling Problem
PC-ARX Models

Polynomial Chaos AutoRegressive with eXogenous input (PC-ARX) models

AR part X part
Ng np
)[I]JrZa, Y[t —i] Zb )-x[t —i]+elr], efr] ~ NID(0,62)

AR/X model parameters are modeled as random variables projected on a
polynomial chaos basis, in order to enable uncertainty propagation.

)= Y0y 6 4(8) = Lty @
j= =

a; j,b; j: unknown deterministic coefficients of projection
q)dm: basis functions orthonormal w.r.t. the joint probability density function of &



Implementation on a 5 storey Nonlinear Frame

The Metamodeling Problem
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Simple Implementation Example

The described framework is implemented for the simulation of the
response of a five-storey shear frame, subjected to a (known)
dynamic input in the form of earthquake excitation.

The frame is described by a nonlinear material law, allowing for
the sections to move into the post-yield region which causes
nonlinear behavior to occur.

We consider the following input parameters:

Input Vertical Horizontal
parameter elements elements
Density (kg/m”) 7850 7850
Poisson ratio 0.29 0.29
Young moduli (GPa) % (190,210) % (190,210)
Yield stress (MPa)  (200,500)  (200,500)
Cross section area (m?) | %(0.04,0.09) 0.0625
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The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

One of the recorded acceleration instances for the El Centro earthquake® has been utilized as
ground excitation:

MW
~
)
3
Time (s)
x 10°
E s |
5 9 1
5.l |
n
-0.25 -0.15 -0.05 0.05 0.15 0.25

Top floor displacement (m)

causing the observed shear stress vs top floor displacement response.
The curve shown here corresponds to the first simulation experiment (with &) and
t=1,2,...250.

* downloadable at: http: //peer.berkeley.edu/peer_ground_motion_database



The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

20 simulations are conducted using a detailed structural model. The ANSYS finite element
software has been used for the reference simulations.

The derived functional representation

Polynomial expansion of b4(£) model parameter onto the input space

vy (1a) 2 19 I: (Fa) AT 004 19 I (Pa) vy \1a) 2 A (mf)



The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

In order to validate the workings of the metamodeling framework the performance of the
identified PC-ARX(10,10) metamodel is tested for the prediction and simulation of the
dynamic response of the FE model subjected this time to the Pacoima Dam earthquake.

A jz o ‘ 3% ;-% 7;1 s R
£ $% R
£ il Y sj% f*gj ] 9) f% f\%f%ﬁ%
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%Sj ol %‘% *‘ i
T 35 ; ;

Time(s)

0.7836 % prediction error
3.7585 % simulation error
5000 times reduced simulation time




The Metamodeling Problem
Running Field Project

Structural Identification for Condition Assessment
of Swiss Bridges, Research Grant funded by the Federal Roads Office
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Multiscale Modeling of Engineering Systems
Structural Assessment of Complex Structures

Beyond Reduced Order Models it is
often desirable to maintain model
refinement at a reduced computational
toll

Multi - Phase Structures

@ Masonry structures constitute a
large portion of the existing
building stock

@ Novel structures, largely based on
composite & polymer materials are
continuously emerging




Multiscale Modeling of Engineering Systems

Implementing novel technologies in masonry retrofitting - SNSF project

Modeling Challenges

@ Complex behaviour of the constituents - Crack propagation
@ Material parameters hard to identify

@ Standard FEM modeling procedures are too expensive




Multiscale Modeling of Engineering Systems

Structural Assessment of Complex Structures

Beam

Column MultiScale
Modeling

Surface

Beam
Column

Finite
Elements
Super-
elements

Micro Structural Macro
Modeling Model Modeling
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Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

Given a heterogeneous deformable body (flaws, inclusions, material
layers)




Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

And an accompanying fine mesh (standard FE approach)



Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

Solve this mesh instead (multiscale approach)




Multiscale Modeling of Engineering Systems Micro to Macro transition

MultiScale FEM

— For each Coarse node i
Find a map M(Q) — Q D ? L(¢jp) = 0 and bes
End For

/\ End do

For each coarse grid block n do ]

Downscale computations

@ Re-evaluation of the mapping is required in a nonlinear analysis

@ Use the Hysteretic FE in the micro-scale

Proposed Approach:

Couple the Multiscale FE approach with a Hysteretic FE Formulation

33743



Multiscale Modeling of Engineering Systems Hysteretic Finite Element Formulation

The hysteretic formulation of Finite Elements

@ Considering the additive decomposition of the strain vector
{e} = (e} +{em}

@ An evolution equation for the plastic part of total strain is derived

‘i’ N
{err) = ]50\ (B+men (167 (o)) ) RI ¢}

Triantafyllou, S.P., Koumousis, V.K. (2012). “A Bouc-Wen Type Hysteretic Plane Stress
Element”, Journal of Engineering Mechanics, 138 (3), pp. 235-246

S. Triantafyllou and E. Chatzi (2013), “A novel Hysteretic Multiscale Finite Element Method
for Nonlinear Dynamic Analysis of Heterogeneous Structures”, 11th International Conference
on Structural Safety & Reliability



Multiscale Modeling of Engineering Systems Applications

Textile Reinforced Masonry Wall

1m

Mass
0.05 m

Mortar Stone
Young's modulus [MPa] 3494 20200 -
Poisson’s ratio 0.11 0.2
Plasticity Mohr-Coulomb von-Mises
Friction angle [deg] 21.8 -

—

Cohesion [MPa] 01 5 _

.

Yield Stress [MPa] - 69.2 25m 40 m

D stone [ Mortar [ composite

(a)

Micro-Element 19

Composite Material) (b)
Ey| =54000  Epy —53200  E33 = 53200
E|=53200  Ep3=54000  Ep3 =54000
Poisson’s ratio Vo —0.14 Vo3 =02 Vi3 =02

Young's modulus [MPa]




Multiscale Modeling of Engineering Systems Applications

Textile Reinforced Masonry Wall

@ Results derived from the HMsFEM formulation are compared to classical FEM

75% Reduction in Computational Time J

@ The plastic strain components are readily derived as part of the solution



The Broad Picture

Computational Tool
Underlying System Model R

Multiscale Hys FEM

= Masonry Material ‘«
properties

= Constitutive Laws

= Structural Response
under dynamic loading

Applications

A computational analysis framework for dynamically evolving systems |
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The Broad Picture



The Broad Picture



The Broad Picture



The Broad Picture



The Broad Picture

The Broad Picture

A gathering of Competences

Detect
Damage

Monitor/
Inspect

_)

Assess
existing
condition

Use new
technologies

manage

Improve
fundamental
knowledge

control

Define new

methods

retrofit

Sustainable
system
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