Experimental detection and quantification of crack networks in heterogeneous materials using techniques based on 3D digital images

Yang CHEN¹, James Marrow¹, Camille CHATEAU², Michel BORNERT²

¹University of Oxford, Department of Materials, United Kingdom

²Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, Université Paris-Est, France

Introduction

Micro-macro (structure-property) relationship

Composite materials

Microstructure

Fracture behaviour

Microcracks

■ If only a few cracks, ...

[Cinar et al., Optics and Lasers in Eng. 2017]

However, in real composite materials, ...

[Chen et al., Experimental Mechanics 2019]

In situ test with X-ray CT

cracks

 $\mathcal{D}\sigma$

Crack detection: DVC based image subtraction

Applications: Nuclear graphite

Quasi-brittle materials with fine image texture

(under quasi-static loading)

Applications: Nodular cast iron

Ductile materials

(under fatigue loading)

Applications: SiC-SiC composites

Quasi-brittle materials with moderate image texture

(under quasi-static loading)

Applications: SiC-SiC composites

☐ Detected crack networks in SiC-SiC composites

[Y.Chen et al., Experimental Mechanics, 2019]

Applications: SiC-SiC composites

☐ Cracks and braiding structure

Can we do more?

Quantitative measurements?

Crack quantification: Grey-level based method

☐ Crack in digital image: a set of points, each having a grey level

- Crack voxel
 - + Projected position
- Local crack surface area
 - → plane-voxel intersection area

⇒ Crack surface area

- Local normal direction ?
 - → Inertia tensor calculated around the considered voxel
- Projected position ?
 - → Grey level profile along the normal direction

• Local opening level \rightarrow integration along N

$$\begin{array}{ccc}
f(\underline{X}_c) & \longrightarrow & d(\underline{X}_c) = \frac{f(\underline{X}_c) - f_{Solid}}{f_{Void} - f_{Solid}} \\
[0, 255] & & [0, 1]
\end{array}$$

Physical meaning of grey level for XCT

image: Beer-Lambert law

Crack opening

Crack quantification: Grey-level based method

☐ 3D visualisation of the projected positions with local opening levels described by different colours

Crack quantification: Grey-level based method

- ☐ Comparison with <u>another quantification method</u>
 - measurement from DVC displacement field
 [Cinar et al., 2017]
 - Similar magnitude of crack opening
 - Similar crack tip position

Cast Iron – fatigue test

Concluding remarks

Now, we can do:

- Detection of crack networks in complex heterogeneous microstructures
- Measurement of crack opening and surface area

Limitations?

• • •

Useful?

- For understanding the micro-macro (structure-property) relationship
 - 3D information on crack networks
 - Quantitative measurement
- For numerical modelling
 - Validation of numerical models
 - Identification/Calibration of numerical models