MIDDLE-EAR MECHANICS AND SOUND LOCALIZATION IN THE LIZARD: A FINITE-ELEMENT APPROACH

PIETER LIVENS

BIMEF
Biophysics and Biomedical Physics
University of Antwerp

4th international workshop on VALIDATION OF COMPUTATIONAL MECHANICS MODELS

What is hearing?

Building and verifying the model

1

2

3

4

Mammals versus non-mammals

Conclusions and future goals

- Sound detection
- Sound localization

- Sound detection
- Sound localization

- Sound detection
- ${f \mathbb{P}}$ Sound localization

- Does the previous explanation hold when investigating non-mammals?
- NO: Different anatomy, different approaches to hearing

- NO: Different anatomy, different approaches to hearing
- Migher flexibility means lower audible frequencies of sound

- Migher flexibility means lower audible frequencies of sound
- No external localization cues are possible

Lizards use internally generated amplitude and timing differences

- The Brown anole (Anolis sagrei) is small lizard
- μCT scanning and subsequent image segmentation allows the creation
 of an accurate mesh for finite-element modelling

- A larger amount of flexibility should be observed when compared to mammals
- The eardrums should have a high amount of internal coupling

The estimated resonance frequency from literature² is 3.7 kHz

The estimated resonance frequency from literature² is 3.7 kHz

The estimated resonance frequency from literature² is 3.7 kHz

The estimated resonance frequency from literature² is 3.7 kHz

3D MOTION OF THE MIDDLE EAR

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

Christensen-Dalsgaard, J., Manley, G.A., 2008. Acoustical Coupling of Lizard Eardrums. JARO 9, 407–416.

- During the model construction, complexity is sequentially added
 - Effect of different parameters are better observed
 - Model changes have to express the added physics
 - What physics to include remains up to the user
- Model results were mainly validated compared to the experimental data
 - Experimental data is scarce
 - Material properties are not well known
- ${\mathfrak D}$ More experimental data is being gathered to improve future models

16

Questions?

Livens, P., Muyshondt, P.G.G., Dirckx, J.J.J., 2019. Sound localization in the lizard using internally coupled ears: A finite-element approach. Hearing Research.

SUPPLEMENTARY SLIDE(S)

SUPPLEMENTARY SLIDE(S)

- The IE is a fluid filled structure and adds significant resistance (impedance) to the middle ear
- ${\mathfrak D}$ The inner ear was modeled with a three parameter model for the impedance Z_{IE}

$$Z_{IE} = R + i \left(M \cdot \omega - \frac{K}{\omega} \right)$$

- Values of M, K and R were calculated based on measurements on the Ostrich (e.g., $m \sim x^3$ and $M = m/A^2$ so $M \sim 1/x$)
- The pressure on the footplate is then found as

$$P = Z_{IE} \cdot U_{FP}$$